Created
January 14, 2020 22:57
-
-
Save akarve/30c79c5ec90b68f8844e89fd03fe95e1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# define hashes | |
GIT_HASH=0a7a9d10 | |
QUILT_HASH=3722a498 | |
DOCKER_HASH=sha256:8a4f4123c92a7fe2e8ca4c404094ab95dc1fb868ad077d2e084ba4082a5a29c1 | |
# pull image | |
DOCKER_IMAGE=quiltdata/pytorch-detectron2-demo@${DOCKER_HASH} | |
docker pull ${DOCKER_IMAGE} | |
# run image (interactively for illustration) | |
nvidia-docker run -it \ | |
--ulimit memlock=-1 \ | |
--ulimit stack=67108864 \ | |
--shm-size=8gb \ | |
-e GIT_HASH=${GIT_HASH} \ | |
-e QUILT_HASH=${QUILT_HASH} \ | |
${DOCKER_IMAGE} | |
## clone and install detectron2 | |
git clone https://github.com/facebookresearch/detectron2 | |
cd detectron2 | |
git checkout ${GIT_HASH} | |
pip install -e . | |
## install data | |
quilt3 install cv/coco2017 \ | |
--registry=s3://quilt-ml \ | |
--dest=./datasets/coco/ \ | |
--top-hash=${QUILT_HASH} | |
## train | |
python tools/train_net.py \ | |
--num-gpus 8 \ | |
--config-file \ | |
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment