Skip to content

Instantly share code, notes, and snippets.

@akarve
Created January 14, 2020 22:57
Show Gist options
  • Save akarve/30c79c5ec90b68f8844e89fd03fe95e1 to your computer and use it in GitHub Desktop.
Save akarve/30c79c5ec90b68f8844e89fd03fe95e1 to your computer and use it in GitHub Desktop.
# define hashes
GIT_HASH=0a7a9d10
QUILT_HASH=3722a498
DOCKER_HASH=sha256:8a4f4123c92a7fe2e8ca4c404094ab95dc1fb868ad077d2e084ba4082a5a29c1
# pull image
DOCKER_IMAGE=quiltdata/pytorch-detectron2-demo@${DOCKER_HASH}
docker pull ${DOCKER_IMAGE}
# run image (interactively for illustration)
nvidia-docker run -it \
--ulimit memlock=-1 \
--ulimit stack=67108864 \
--shm-size=8gb \
-e GIT_HASH=${GIT_HASH} \
-e QUILT_HASH=${QUILT_HASH} \
${DOCKER_IMAGE}
## clone and install detectron2
git clone https://github.com/facebookresearch/detectron2
cd detectron2
git checkout ${GIT_HASH}
pip install -e .
## install data
quilt3 install cv/coco2017 \
--registry=s3://quilt-ml \
--dest=./datasets/coco/ \
--top-hash=${QUILT_HASH}
## train
python tools/train_net.py \
--num-gpus 8 \
--config-file \
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment