Created
August 14, 2020 09:06
-
-
Save akash-ch2812/f58e6762e2c038d93244739eb0690e6c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# convert keywords to vector | |
def createKeywordsVectors(keyword, nlp): | |
doc = nlp(keyword) # convert to document object | |
return doc.vector | |
# method to find cosine similarity | |
def cosineSimilarity(vect1, vect2): | |
# return cosine distance | |
return 1 - spatial.distance.cosine(vect1, vect2) | |
# method to find similar words | |
def getSimilarWords(keyword, nlp): | |
similarity_list = [] | |
keyword_vector = createKeywordsVectors(keyword, nlp) | |
for tokens in nlp.vocab: | |
if (tokens.has_vector): | |
if (tokens.is_lower): | |
if (tokens.is_alpha): | |
similarity_list.append((tokens, cosineSimilarity(keyword_vector, tokens.vector))) | |
similarity_list = sorted(similarity_list, key=lambda item: -item[1]) | |
similarity_list = similarity_list[:30] | |
top_similar_words = [item[0].text for item in similarity_list] | |
top_similar_words = top_similar_words[:3] | |
top_similar_words.append(keyword) | |
for token in nlp(keyword): | |
top_similar_words.insert(0, token.lemma_) | |
for words in top_similar_words: | |
if words.endswith("s"): | |
top_similar_words.append(words[0:len(words)-1]) | |
top_similar_words = list(set(top_similar_words)) | |
top_similar_words = [words for words in top_similar_words if enchant_dict.check(words) == True] | |
return ", ".join(top_similar_words) | |
keywords = ['label', 'package'] | |
similar_keywords = getSimilarWords(keywords, nlp) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment