Created
June 14, 2020 05:13
-
-
Save akashks1998/f00e1204654503b99a78cd05374819b1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The following program checks if a functions symmetric block multilinear representation can be not bounded by 1. | |
# We check this over all functions on n variables | |
# A function is a counterexample if its block multilinear rep is not bounded | |
from sys import argv | |
import math | |
import itertools | |
from mip import * | |
#from random import seed | |
#from random import randint | |
f = open("output.txt", "w") | |
print("Give the number of variables") | |
n=int(input()) # number of variables | |
size_tt = 2**n # size of the truth table of f | |
t=0 # degree of the polynomials | |
n_bm = t * (n + 1) | |
count = 0 # global variable to count number of counterexamples | |
def countSetBits(n): # Count Number of bits which are 1 in n | |
count = 0 | |
while (n): | |
count += n & 1 | |
n >>= 1 | |
return count | |
def binary(l,dig): #binary representation of l (0 replaced with -1) with dig number of digits | |
rep = [] | |
m=int(l) | |
for i in range(0,dig): | |
k = m%2 | |
#f.write(m,k) | |
if (k == 0): | |
rep.append(-1) | |
else: | |
rep.append(1) | |
m = int(m / 2) | |
return rep | |
#f.write(binary(63)) | |
def symmetricSplit(cnt,n): # Split 1 into t parts | |
i=cnt%2 | |
if cnt//2==0: | |
return [[0]*cnt]*(n+1) | |
else: | |
split= [ [j]*((cnt//2)*2) for j in range(n+1) ] | |
if i: | |
for j in range(len(split)): | |
split[j]=[0]+split[j] | |
return split | |
def is_func(func,n,t): # is this function a counterexample, needs input in block multilinear representation | |
m=Model() | |
f.write("Number of blocks: {}".format(str(t))) | |
permutations_t=list(itertools.permutations(list(range(t)))) | |
x_b=[] | |
x_ext=[] | |
x_sum=[] | |
t_fact=math.factorial(t) | |
for x in range(n+1): | |
x_b.append( [m.add_var(name="x_b_"+str(x)+"_"+str(i),var_type=BINARY) for i in range(t)] ) | |
for x in range(size_tt): | |
x_ext.append([[m.add_var(name="x_ext_"+str(x)+"_"+str(j)+"_"+str(i),var_type=BINARY) for i in range(t_fact)] for j in range(n+1)] ) # This will store the value of monomial's | |
x_sum.append([[m.add_var(name="x_sum_"+str(x)+"_"+str(j)+"_"+str(i),var_type=INTEGER) for i in range(t_fact)] for j in range(n+1)]) | |
vars=[] | |
temp=x | |
cnt=0 | |
for i in range(n): | |
if 1&temp==1: | |
vars.append(i+1) | |
cnt+=1 | |
temp//=2 | |
if cnt>t: | |
continue | |
split=symmetricSplit(t-cnt) | |
for i in range(n+1): | |
temp=vars.copy()+split[i] | |
for j in range(t_fact): | |
m+=(x_ext[x][i][j]+2*x_sum[x][i][j]==xsum(x_b[temp[z]][permutations_t[j][z]] for z in range(t))) # Adding Constraints of the ILP | |
m.objective=xsum( (1/(n+1))*func[x][z]*(1-2*x_ext[x][y][z]) for x in range(size_tt) for y in range(n+1) for z in range(t_fact) ) | |
status = m.optimize(max_seconds=500) | |
if status == OptimizationStatus.OPTIMAL: | |
f.write('Optimal value is {}'.format(str(m.objective_value))) | |
if m.objective_value<-1-1e-5: | |
f.write('Counter example found with {} as its minimum value'.format(m.objective_value)) | |
for v in m.vars: | |
f.write('{} : {}'.format(v.name, v.x)) | |
exit() | |
def chi(i,j): # Calculates \chi_i(j) , where i should be viewed as a set (-1 means index not present) and j should be viewed as an assignment. | |
value = 1 | |
bin_j = binary(j,n) | |
bin_i = binary(i,n) | |
for k in range(0,n): | |
if (bin_i[k] == 1): | |
value = value * bin_j[k] | |
#f.write(value, bin_i, bin_j) | |
return value | |
def poly(func_tt): # give the block multilinear rep of f from its truth table representation, the first entry of truth table is -1,-1,..., -1 | |
global t | |
t=0 | |
func_poly = [0] * size_tt | |
for i in range(0,size_tt): | |
func_poly[i] = 0 | |
for j in range(0,size_tt): | |
func_poly[i] = func_poly[i] + func_tt[j] * chi(i,j) | |
func_poly[i] = (1.0 / size_tt) * func_poly[i] # ith Fourier coefficient | |
if abs(func_poly[i])>1e-6: | |
t=max(countSetBits(i),t) | |
t_fact=math.factorial(t) | |
h = 1/(t_fact) | |
func_bm=[] | |
for i in range(size_tt): | |
func_bm.append([0]*t_fact) | |
for j in range(t_fact): | |
func_bm[i][j]=func_poly[i]*h | |
return func_bm | |
for i in range(0,2**(size_tt)): | |
f_tt = binary(i, size_tt) | |
f.write("The truth table of the function is {}".format(str(f_tt))) | |
f_bm = poly(f_tt) | |
f.write("Its blockmultilinear poly representation is {}".format( str(f_bm))) | |
is_func(f_bm,n,t) | |
f.write("count is {}".format( count)) | |
f.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment