Created
January 28, 2018 06:31
-
-
Save akitotakeki/c82a3bb38c930cd295628cfa1e29fdd7 to your computer and use it in GitHub Desktop.
Implementation of Shake-Shake regularization [X. Gastaldi, ICLR2017 workshop] by chainer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
import chainer | |
from chainer import cuda | |
from chainer import configuration | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer.initializers import normal | |
import chainer.links.model.vision.resnet as R | |
import collections | |
class Mul(chainer.function.Function): | |
def forward(self, inputs): | |
x1, x2 = inputs[:2] | |
xp = cuda.get_array_module(x1) | |
alpha = xp.ones(x1.shape, dtype=x1.dtype) * 0.5 | |
if configuration.config.train: | |
for i in range(len(alpha)): | |
alpha[i] = xp.random.rand() | |
return x1 * alpha + x2 * (xp.ones(x1.shape, dtype=x1.dtype) - alpha), | |
def backward(self, inputs, grad_outputs): | |
gx = grad_outputs[0] | |
xp = cuda.get_array_module(gx) | |
beta = xp.empty(gx.shape, dtype=gx.dtype) | |
for i in range(len(beta)): | |
beta[i] = xp.random.rand() | |
return gx * beta, gx * (xp.ones(gx.shape, dtype=gx.dtype) - beta) | |
def mul(x1, x2): | |
return Mul()(x1, x2) | |
class BuildingShakeBlock(chainer.link.Chain): | |
"""A building block that consists of several Basic layers. | |
Args: | |
n_layer (int): Number of layers used in the building block. | |
in_channels (int): Number of channels of input arrays. | |
out_channels (int): Number of channels of output arrays. | |
stride (int or tuple of ints): Stride of filter application. | |
initialW (4-D array): Initial weight value used in | |
the convolutional layers. | |
""" | |
def __init__(self, n_layer, in_channels, | |
out_channels, stride, initialW=None): | |
super(BuildingShakeBlock, self).__init__() | |
with self.init_scope(): | |
self.a = ShakeA(in_channels, out_channels, stride, initialW) | |
self._forward = ["a"] | |
for i in range(n_layer - 1): | |
name = 'b{}'.format(i + 1) | |
basic = ShakeB(out_channels, initialW) | |
setattr(self, name, basic) | |
self._forward.append(name) | |
def __call__(self, x): | |
for name in self._forward: | |
layer = getattr(self, name) | |
x = layer(x) | |
return x | |
@property | |
def forward(self): | |
return [getattr(self, name) for name in self._forward] | |
class ShakeA(chainer.link.Chain): | |
def __init__(self, in_channels, out_channels, stride=2, initialW=None): | |
super(ShakeA, self).__init__() | |
with self.init_scope(): | |
self.branch1 = RCBRCB(in_channels, out_channels, stride=stride, | |
initialW=initialW) | |
self.branch2 = RCBRCB(in_channels, out_channels, stride=stride, | |
initialW=initialW) | |
self.conv1 = L.Convolution2D( | |
in_channels, out_channels // 2, 1, stride, 0, | |
initialW=initialW, nobias=True) | |
self.conv2 = L.Convolution2D( | |
in_channels, out_channels // 2, 1, stride, 0, | |
initialW=initialW, nobias=True) | |
self.bn = L.BatchNormalization(out_channels) | |
def __call__(self, x): | |
h1 = self.branch1(x) | |
h2 = self.branch2(x) | |
x0 = F.relu(x) | |
x1 = self.conv1(x0) | |
x2 = self.zero_pads(self.zero_pads(x0, 1, 2), 1, 3)[:, :, 1:, 1:] | |
x2 = self.conv2(x2) | |
h0 = F.concat((x1, x2)) | |
h0 = self.bn(h0) | |
return mul(h1, h2) + h0 | |
def zero_pads(self, x, pad, where): | |
sizes = list(x.data.shape) | |
sizes[where] = pad | |
pad_mat = chainer.Variable(chainer.cuda.to_gpu(self.xp.zeros(sizes, dtype=np.float32), device=chainer.cuda.get_device_from_array(x.data))) | |
return F.concat((pad_mat, x), axis=where) | |
class ShakeB(chainer.link.Chain): | |
def __init__(self, in_channels, initialW=None): | |
super(ShakeB, self).__init__() | |
with self.init_scope(): | |
self.branch1 = RCBRCB(in_channels, in_channels, initialW=initialW) | |
self.branch2 = RCBRCB(in_channels, in_channels, initialW=initialW) | |
def __call__(self, x): | |
h1 = self.branch1(x) | |
h2 = self.branch2(x) | |
return mul(h1, h2) + x | |
class RCBRCB(chainer.link.Chain): | |
def __init__(self, in_channels, out_channels, stride=1, initialW=None): | |
super(RCBRCB, self).__init__() | |
with self.init_scope(): | |
self.conv1 = L.Convolution2D( | |
in_channels, out_channels, 3, stride, 1, initialW=initialW, | |
nobias=True) | |
self.bn1 = L.BatchNormalization(out_channels) | |
self.conv2 = L.Convolution2D( | |
out_channels, out_channels, 3, 1, 1, initialW=initialW, | |
nobias=True) | |
self.bn2 = L.BatchNormalization(out_channels) | |
def __call__(self, x): | |
h = self.conv1(F.relu(x)) | |
h = self.conv2(F.relu(self.bn1(h))) | |
h = self.bn2(h) | |
return h | |
class ShakeShake(chainer.Chain): | |
def __init__(self, n_layers, n_out, k=32, layer_names=None): | |
super().__init__() | |
kwargs = {'initialW': normal.HeNormal(scale=1.0)} | |
if (n_layers - 2) % 6 == 0: | |
block = [(n_layers - 2) // 6] * 3 | |
else: | |
raise ValueError( | |
'The n_layers argument should be mod({} - 2, 6) == 0, \ | |
but {} was given.'.format(n_layers, n_layers)) | |
with self.init_scope(): | |
self.conv1 = L.Convolution2D(3, 16, 3, 1, 1, nobias=True, **kwargs) | |
self.bn1 = L.BatchNormalization(16) | |
self.res2 = BuildingShakeBlock( | |
block[0], 16, k, 1, **kwargs) | |
self.res3 = BuildingShakeBlock( | |
block[1], k, 2 * k, 2, **kwargs) | |
self.res4 = BuildingShakeBlock( | |
block[2], 2 * k, 4 * k, 2, **kwargs) | |
self.fc5 = L.Linear(4 * k, n_out) | |
self.functions = collections.OrderedDict([ | |
('conv1', [self.conv1, self.bn1]), | |
('res2', [self.res2]), | |
('res3', [self.res3]), | |
('res4', [self.res4]), | |
('pool4', [F.relu, R._global_average_pooling_2d]), | |
('fc5', [self.fc5]), | |
]) | |
if layer_names is None: | |
layer_names = list(self.functions.keys())[-1] | |
if (not isinstance(layer_names, str) and | |
all([isinstance(name, str) for name in layer_names])): | |
return_tuple = True | |
else: | |
return_tuple = False | |
layer_names = [layer_names] | |
self._return_tuple = return_tuple | |
self._layer_names = layer_names | |
def __call__(self, x): | |
h = x | |
activations = dict() | |
target_layers = set(self._layer_names) | |
for key, funcs in self.functions.items(): | |
if len(target_layers) == 0: | |
break | |
for func in funcs: | |
h = func(h) | |
if key in target_layers: | |
activations[key] = h | |
target_layers.remove(key) | |
if self._return_tuple: | |
activations = tuple( | |
[activations[name] for name in self._layer_names]) | |
else: | |
activations = list(activations.values())[0] | |
return activations | |
def extract(self, images, layers=['fc5']): | |
self._layer_names = layers | |
x = chainer.Variable(self.xp.asarray(images)) | |
return chainer.cuda.to_cpu(self(x).data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment