Skip to content

Instantly share code, notes, and snippets.

@akofink
Created April 24, 2014 18:39
Show Gist options
  • Select an option

  • Save akofink/11264922 to your computer and use it in GitHub Desktop.

Select an option

Save akofink/11264922 to your computer and use it in GitHub Desktop.
\documentclass[11pt, oneside]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{gensymb}
\usepackage{geometry}
\geometry{letterpaper}
\usepackage{tikz}
\usepackage{graphicx}
\usepackage{siunitx}
\usepackage{upgreek}
\usepackage{qtree}
\title{h10-ajkofink\\CSC 333 (001)}
\author{Andrew Kofink}
\date{23 April 2014}
\begin{document}
\maketitle
\begin{enumerate}
\item Since NP is a superset of NPC and P, assume M1SAT $\in$ NP. In order to
prove that M1SAT $\in$ NPC, we must show that $M1SAT \leq_p X \wedge
X \leq_p M1SAT$ where X $\in$ NPC. In order to show this, we must devise a
transform function for M1SAT which runs in P time. For this problem, it is
easy to check the 3SAT problem in time P for a given set of variables A.
This condition must hold, and the number of non-negated terms, $x_i$, in the
solution clause must be $\leq k$.
\item
\item
\item
\item
\item
\end{enumerate}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment