Skip to content

Instantly share code, notes, and snippets.

@akosma
Last active December 14, 2022 02:37
Show Gist options
  • Save akosma/865b887f993de462369a04f4e81596b8 to your computer and use it in GitHub Desktop.
Save akosma/865b887f993de462369a04f4e81596b8 to your computer and use it in GitHub Desktop.
RSA algorithm in C using the GMP library
/*
CmakeLists.txt:
cmake_minimum_required(VERSION 3.6)
project(rsa)
set(CMAKE_C_STANDARD 11)
set(SOURCE_FILES main.c)
add_executable(rsa ${SOURCE_FILES})
target_link_libraries(rsa gmp)
*/
#include <stdio.h>
#include <gmp.h>
#include <assert.h>
typedef long long unsigned int number;
// Calculation of the RSA keys using GMP
// https://gmplib.org/
// Based on an earlier version in PHP
// https://gist.github.com/akosma/9058c43c76da2e6691637b1332058ddc
void rsa_keys(mpz_t n, mpz_t d, const mpz_t p, const mpz_t q, const mpz_t e) {
mpz_mul(n, p, q);
mpz_t p_1, q_1, lambda, gcd, mul, mod;
mpz_inits(p_1, q_1, lambda, gcd, mul, mod, NULL);
mpz_sub_ui(p_1, p, 1);
mpz_sub_ui(q_1, q, 1);
mpz_lcm(lambda, p_1, q_1);
printf("lambda = %s\n", mpz_get_str(NULL, 0, lambda));
// e must be bigger than 1
assert(mpz_cmp_ui(e, 1) > 0);
// e must be smaller than lambda
assert(mpz_cmp(lambda, e) > 0);
// GCD(e, lambda) must be 1
mpz_gcd(gcd, e, lambda);
assert(mpz_cmp_ui(gcd, 1) == 0);
mpz_invert(d, e, lambda);
// e * d MOD lambda must be 1
mpz_mul(mul, e, d);
mpz_mod(mod, mul, lambda);
assert(mpz_cmp_ui(mod, 1) == 0);
mpz_clears(gcd, p_1, q_1, mul, mod, lambda, NULL);
}
// RSA encryption
void encrypt(mpz_t encrypted,
const mpz_t message,
const mpz_t e,
const mpz_t n) {
mpz_powm(encrypted, message, e, n);
}
// RSA decryption
void decrypt(mpz_t original,
const mpz_t encrypted,
const mpz_t d,
const mpz_t n) {
mpz_powm(original, encrypted, d, n);
}
void display_gmp(const mpz_t message,
const mpz_t n,
const mpz_t e,
const mpz_t d) {
mpz_t encrypted, decrypted;
mpz_inits(encrypted, decrypted, NULL);
encrypt(encrypted, message, e, n);
decrypt(decrypted, encrypted, d, n);
// The decrypted message must be equal to the original
assert(mpz_cmp(message, decrypted) == 0);
printf("Public key = (e: %s, n: %s)\n", mpz_get_str(NULL, 0, e), mpz_get_str(NULL, 0, n));
printf("Private key = (d: %s, n: %s)\n", mpz_get_str(NULL, 0, d), mpz_get_str(NULL, 0, n));
printf("Original message: %s\n", mpz_get_str(NULL, 0, message));
printf("Encrypted message: %s\n", mpz_get_str(NULL, 0, encrypted));
printf("Decrypted message: %s\n", mpz_get_str(NULL, 0, decrypted));
printf("\n");
mpz_clears(encrypted, decrypted, NULL);
}
void display_num(const number msg,
const number pi,
const number qi,
const number ei) {
printf("Initializing with p = %llu, q = %llu, e = %llu\n", pi, qi, ei);
mpz_t n, d, p, q, e, original;
mpz_init_set_ui(p, pi);
mpz_init_set_ui(q, qi);
mpz_init_set_ui(e, ei);
mpz_init_set_ui(original, msg);
mpz_inits(n, d, NULL);
rsa_keys(n, d, p, q, e);
display_gmp(original, n, e, d);
mpz_clears(n, d, e, p, q, original, NULL);
}
void display_str(const char *msg,
const char *pi,
const char *qi,
const char *ei) {
printf("Initializing with p = %s, q = %s, e = %s\n", pi, qi, ei);
mpz_t n, d, p, q, e, original;
mpz_init_set_str(p, pi, 10);
mpz_init_set_str(q, qi, 10);
mpz_init_set_str(e, ei, 10);
mpz_init_set_str(original, msg, 10);
mpz_inits(n, d, NULL);
rsa_keys(n, d, p, q, e);
display_gmp(original, n, e, d);
mpz_clears(n, d, e, p, q, original, NULL);
}
int main() {
mpz_t msg, n, d, e;
// Example taken from Wikipedia
// https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
display_num(65, 61, 53, 17);
// Example from Twitter
// https://twitter.com/kosamari/status/838738015010848769
mpz_init_set_ui(msg, 123);
mpz_init_set_ui(n, 323);
mpz_init_set_ui(e, 5);
mpz_init_set_ui(d, 29);
display_gmp(msg, n, e, d);
// Very small prime numbers
display_num(123, 13, 19, 17);
// With some prime numbers from
// http://www.bigprimes.net/
display_num(67890, 541, 461, 107);
display_num(123456, 1181, 929, 173);
// The PHP version takes around 10 seconds on a MacBook Air
display_num(123456, 1181, 929, 1987);
// The PHP takes around 40 seconds in a MacBook Air
display_num(123456, 1181, 929, 17);
// Very big numbers; using Mersenne primes,
// something impossible in the PHP version
display_str("1111119999999999911111111",
"162259276829213363391578010288127",
"618970019642690137449562111",
"170141183460469231731687303715884105727");
mpz_clears(n, d, e, msg, NULL);
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment