Created
May 12, 2013 09:46
-
-
Save aks/5563008 to your computer and use it in GitHub Desktop.
Sum of Two Prime Numbers: If p, q > 2 are consecutive in set of primes. Since p,q can only be odd number, (p+q) is an even number. Can (p+q)/2 be prime? It appears not, as confirmed for the pairs of consecutive primes in first million primes. See the J program below.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
i. 20 | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | |
NB. generate the first 20 primes | |
p: i. 20 | |
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 | |
NB. box up consecutive pairs of those primes | |
(2 <\ ]) p: i. 20 | |
┌───┬───┬───┬────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ | |
│2 3│3 5│5 7│7 11│11 13│13 17│17 19│19 23│23 29│29 31│31 37│37 41│41 43│43 47│47 53│53 59│59 61│61 67│67 71│ | |
└───┴───┴───┴────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘ | |
NB. sum up each pair of primes | |
+/ each (2 <\ ])p: i. 20 | |
┌─┬─┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬───┬───┬───┬───┬───┐ | |
│5│8│12│18│24│30│36│42│52│60│68│78│84│90│100│112│120│128│138│ | |
└─┴─┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴───┴───┴───┴───┴───┘ | |
NB. divide each sum by 2 | |
2 %~ each +/ each (2 <\ ])p: i. 20 | |
┌───┬─┬─┬─┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐ | |
│2.5│4│6│9│12│15│18│21│26│30│34│39│42│45│50│56│60│64│69│ | |
└───┴─┴─┴─┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘ | |
NB. now, test each of those results for being prime. 1 p: y -- tests y for being prime | |
1&p: each 2 %~ each +/ each (2 <\ ])p: i. 20 | |
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐ | |
│0│0│0│0│0│0│0│0│0│0│0│0│0│0│0│0│0│0│0│ | |
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ | |
NB. open the boxed results, so we can add them up | |
>1&p: each 2 %~ each +/ each (2 <\ ])p: i. 20 | |
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
NB. sum/reduce the vector of booleans. If there's a prime, the sum will be > 0 | |
+/>1&p: each 2 %~ each +/ each (2 <\ ])p: i. 20 | |
0 | |
NB. ok. No primes. Let's keep checking for larger groups | |
+/>1&p: each 2 %~ each +/ each (2 <\ ])p: i. 1000 | |
0 | |
+/>1&p: each 2 %~ each +/ each (2 <\ ])p: i. 10000 | |
0 | |
+/>1&p: each 2 %~ each +/ each (2 <\ ])p: i. 100000 | |
0 | |
NB. the previous output took a few seconds. The next will take a few minutes | |
+/>1&p: each 2 %~ each +/ each (2 <\ ])p: i. 1000000 | |
0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment