Last active
February 23, 2021 09:30
-
-
Save akshayjshah/4772174 to your computer and use it in GitHub Desktop.
Calculate and plot correlations between the most popular languages on GitHub.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Fetch data from GitHub Archive using Google's BigQuery */ | |
select actor, repository_language, count(repository_language) as pushes | |
from [githubarchive:github.timeline] | |
where type='PushEvent' | |
and repository_language != '' | |
and PARSE_UTC_USEC(created_at) >= PARSE_UTC_USEC('2012-01-01 00:00:00') | |
and PARSE_UTC_USEC(created_at) < PARSE_UTC_USEC('2013-01-01 00:00:00') | |
group by actor, repository_language; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Calculate and plot the correlations between the most popular languages on GitHub. | |
Details on my blog: http://datahackermd.com/2013/language-use-on-github/ | |
''' | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
def plot_correlation(dataframe, filename, title='', corr_type=''): | |
lang_names = dataframe.columns.tolist() | |
tick_indices = np.arange(0.5, len(lang_names) + 0.5) | |
plt.figure() | |
plt.pcolor(dataframe.values, cmap='RdBu', vmin=-1, vmax=1) | |
colorbar = plt.colorbar() | |
colorbar.set_label(corr_type) | |
plt.title(title) | |
plt.xticks(tick_indices, lang_names, rotation='vertical') | |
plt.yticks(tick_indices, lang_names) | |
plt.savefig(filename) | |
def main(): | |
pushes = pd.read_csv('stacked_language_by_user.csv').pivot( | |
index='actor', | |
columns='repository_language', | |
values='pushes') | |
popular = pushes.select(lambda x: np.sum(pushes[x]) > 50000, axis=1) | |
pearson_corr = popular.corr() | |
plot_correlation( | |
pearson_corr, | |
'pearson_language_correlation.svg', | |
title='2012 GitHub Language Correlations', | |
corr_type='Pearson\'s Correlation') | |
spearman_corr = popular.corr(method='spearman') | |
plot_correlation( | |
spearman_corr, | |
'spearman_language_correlation.svg', | |
title='2012 GitHub Language Correlations', | |
corr_type='Spearman\'s Rank Correlation') | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment