You are an expert project manager and developer, and you specialize in creating super clean updates for what changed in a Git diff. Follow the conventional commits format:
<type>[optional scope]: <description>
[optional body]
[optional footer(s)]
[{"label":"ahmet_nft_bookmark","isSelected":true,"tSNEIteration":2762,"tSNEPerplexity":22,"tSNELearningRate":1,"tSNEis3d":true,"umapIs3d":true,"umapNeighbors":15,"pcaComponentDimensions":[0,1,2],"projections":[{"pca-0":0.13693717122077942,"pca-1":-0.13367532193660736,"pca-2":0.42907166481018066,"pca-3":0.14568129181861877,"pca-4":-0.07530833780765533,"pca-5":0.06651628017425537,"pca-6":0.24455715715885162,"pca-7":-0.04051567241549492,"pca-8":-0.2472582310438156,"pca-9":-0.4723089039325714,"tsne-0":-38.864198146722465,"tsne-1":45.859503163640625,"tsne-2":-55.47306105591671},{"pca-0":-0.19225247204303741,"pca-1":0.05202413350343704,"pca-2":0.09408096969127655,"pca-3":0.11879542469978333,"pca-4":-0.10253594815731049,"pca-5":0.09402178227901459,"pca-6":-0.16754338145256042,"pca-7":-0.24754604697227478,"pca-8":0.025188405066728592,"pca-9":0.04683045670390129,"tsne-0":5.106754401902787,"tsne-1":-5.3310200348375085,"tsne-2":-27.630891069198544},{"pca-0":-0.11822816729545593,"pca-1":0.031617335975170135,"pca-2":0.013 |
{ | |
"embeddings": [ | |
{ | |
"tensorName": "My tensor", | |
"tensorShape": [ | |
1000, | |
50 | |
], | |
"tensorPath": "https://gist.githubusercontent.com/akuzubasli/9011e4b9540cdc687e945f84800748c4/raw/17abfd34d12481ffb98cc478857ff85f751055c7/vectors10K.tsv", | |
"metadataPath": "https://gist.githubusercontent.com/akuzubasli/2869edaeb402613beca900d5d59a51f8/raw/7971b7772446a33495a555fe349f920f8ef7a194/meta10K.tsv", |
grafikdesign | |
intro | |
ann | |
angelic | |
365 | |
vegan | |
vscode | |
telekinesis | |
chart | |
mecanica |
-0.22883981466293335 0.040514856576919556 0.061203327029943466 -0.004027965012937784 -0.14685095846652985 -0.12920628488063812 -0.26417970657348633 0.5123181939125061 -0.22754065692424774 -0.13675573468208313 -0.010550119914114475 -0.18953783810138702 0.09561532735824585 -0.31448468565940857 0.050261180847883224 0.027813199907541275 0.055911626666784286 0.13433022797107697 0.08649671822786331 -0.13167859613895416 0.042428094893693924 0.22159624099731445 0.1800234317779541 -0.103567935526371 0.17207001149654388 0.3254263997077942 -0.10893718898296356 0.25500068068504333 -0.06940209865570068 -0.1013079434633255 -0.16103790700435638 0.0597430057823658 0.0450831763446331 0.04885855317115784 -0.04601088538765907 0.11648306995630264 0.4372333884239197 0.05787457153201103 -0.0954659953713417 -0.15644142031669617 0.3173135817050934 -0.043983932584524155 0.057339463382959366 0.04442962631583214 0.08015929907560349 -0.0359891876578331 -0.2253783792257309 -0.34551844000816345 0.10348613560199738 0.18003490567207336 0.21 |
# Compiled source # | |
################### | |
*.com | |
*.class | |
*.dll | |
*.exe | |
*.o | |
*.so | |
# Packages # |
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |