Created
April 13, 2020 01:15
-
-
Save al102964/87e68e675b997128f67e609aa19a049c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pyspark.sql.functions as f | |
categorias = ['action','adaptation','adventure','apocalypse','artistic',\ | |
'assassination','based on a true story','biblical','blood','brutal','biographical','bollywood','boring',\ | |
'cars','cerebral','classic','censorship','comedy','computers','confusing',\ | |
'cooking','comic','cartoon','court','crime','cult','dark','death','disaster','documentary','drama', | |
'depressing','drugs','environment','erotic','fantasy','fighting','football','freedom',\ | |
'friendship','genius','god','gothic','high school','historical','hollywood','horror',\ | |
'humor','homosexuality','holiday','independent film','kids','love','magic','marriage',\ | |
'military','murder','musical','nature','nostalgia','nudity','olympics','original','oscar',\ | |
'pirates','police','pornography','prison','prostitution','psychology','realistic',\ | |
'revolution','robot','romance','scary','science','sex','snakes','soccer','space','sports',\ | |
'spy','story','stunning','superhero','surreal','suspense','technology','teen','thriller',\ | |
'time','torture','tragedy','travel','treasure','true story','utopia','3d','war','wizards',\ | |
'zombie','dreamworks','disney','gore','imdb top 250','literary adaptation','mafia','pixar','sci fi','violence' | |
] | |
#genome_tags_path = "../../ml-latest/genome-tags.csv" | |
#ratings_path = "../../ml-latest/ratings.csv" | |
#genome_scores_path = "../../ml-latest/genome-scores.csv" | |
genome_tags_path = "s3://<s3-bucket>/movielens-parquet/genome-tags/" | |
ratings_path = "s3://<s3-bucket>/movielens-parquet/ratings/" | |
genome_scores_path = "s3://<s3-bucket>/movielens-parquet/genome-scores/" | |
#genome_tags = spark.read.csv(genome_tags_path,header='true') | |
#ratings = spark.read.csv(ratings_path,header='true') | |
#genome_scores = spark.read.csv(genome_scores_path,header='true') | |
genome_tags = spark.read.parquet(genome_tags_path) | |
ratings = spark.read.parquet(ratings_path) | |
genome_scores = spark.read.parquet(genome_scores_path) | |
genome_tags_filtrado = genome_tags.where(f.col("tag").isin(categorias)) | |
etiquetas_df = genome_scores.join(genome_tags_filtrado,['tagId'],'leftsemi') | |
etiquetas_relevancia = etiquetas_df.join(genome_tags_filtrado,['tagId'],'left') | |
etiquetas_relevancia = etiquetas_relevancia.withColumn("tags", f.regexp_replace(f.col("tag"), " ", "_")) | |
etiquetas_relevancia = etiquetas_relevancia.drop("tag").withColumnRenamed("tags","tag") | |
completa = etiquetas_relevancia.groupby("movieId").pivot("tag").agg(f.avg('relevance')) | |
metricas_ratings = ratings.groupby("movieId").agg(f.avg(f.col("rating")).alias("promedio_rating"), | |
f.count(f.col("userId")).alias("conteo_usuarios")) | |
completa_metricas = completa.join(metricas_ratings,['movieId'], 'left').drop("movieId") | |
completa_metricas.write.mode("overwrite").parquet("s3://<s3-bucket>/movielens-parquet/training/") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment