Last active
December 14, 2015 23:19
-
-
Save alandipert/5164846 to your computer and use it in GitHub Desktop.
Lazy sequence of the digits of pi
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
; based on http://bellard.org/pi/pi.c | |
(defn inv-mod | |
"Returns the inverse of (mod x y)" | |
([x y] (inv-mod y x y 1 0)) | |
([y u v c a] | |
(let [q (long (Math/floor (/ v u))) | |
c' (- a (* q c)) | |
u' (- v (* q u))] | |
(if (zero? u') | |
(let [m (mod c y)] | |
(if (< m 0) (+ m y) m)) | |
(recur y u' u c' c))))) | |
(defn mul-mod | |
"Returns (a*b) mod m" | |
[a b m] | |
(mod (* a b) m)) | |
(defn pow-mod | |
"Returns (a^b) mod m" | |
([a b m] (pow-mod a b m 1)) | |
([a b m r] | |
(let [r' (if (zero? (bit-and b 1)) r (mul-mod r a m)) | |
b' (bit-shift-right b 1)] | |
(if (zero? b') | |
r' | |
(recur (mul-mod a a m) b' m r'))))) | |
(defn prime? | |
"True if n is prime" | |
[n] | |
(if (zero? (mod n 2)) | |
false | |
(loop [i 3 r (long (Math/sqrt n))] | |
(if (zero? (mod n i)) | |
false | |
(if (> i r) | |
true | |
(recur (+ i 2) r)))))) | |
(defn next-prime | |
"Returns the next prime number immediately after n" | |
[n] | |
(let [n2 (inc n)] | |
(if (prime? n2) n2 (recur n2)))) | |
(defn digits [n] | |
(let [N (int (* (+ n 20) (/ (Math/log 10) (Math/log 2))))] | |
(loop [sum 0 a 3] | |
(let [vmax (int (/ (Math/log (* 2 N)) (Math/log a))) | |
av (reduce * 1 (repeat vmax a)) | |
s (loop [k 1, s 0, num 1, den 1, kq 1, kq2 1] | |
(if (<= k N) | |
(let [;; numerator | |
[num-t num-v kq'] | |
(if (>= kq a) | |
(loop [t k, v 0] | |
(let [t' (long (/ t a)) | |
v' (dec v)] | |
(if (zero? (mod t' a)) | |
(recur t' v') | |
[t' v' 0]))) | |
[k 0 (inc kq)]) | |
num' (mul-mod num num-t av) | |
;; denominator | |
[den-t den-v kq2'] | |
(let [t (dec (* 2 k))] | |
(if (>= kq2 a) | |
(if (= kq2 a) | |
(loop [t' t, v 0] | |
(if (zero? (mod t' a)) | |
(recur (long (/ t' a)) (inc v)) | |
[t' v (+ 2 kq2)])) | |
[t 0 (+ 2 (- kq2 a))]) | |
[t 0 (+ 2 kq2)])) | |
den' (mul-mod den den-t av)] | |
(let [v (+ num-v den-v)] | |
(recur (inc k) | |
(if (> v 0) | |
(let [s' (+ s | |
(loop [i v, t (mul-mod (mul-mod (inv-mod den' av) num' av) k av)] | |
(if (< i vmax) | |
(recur (inc i) (mul-mod t a av)) | |
t)))] | |
(if (>= s' av) (- s' av) s')) | |
s) | |
num' | |
den' | |
kq' | |
kq2'))) | |
s)) | |
sum' (mod (+ sum (/ (mul-mod s (pow-mod 10 (dec n) av) av) av)) 1.0)] | |
(if (<= a (* 2 N)) | |
(recur sum' (next-prime a)) | |
sum))))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment