Last active
July 17, 2022 07:04
-
-
Save alanwill/9f4d512817a8913962ac1df85cb6442a to your computer and use it in GitHub Desktop.
AWS Glue JSON to Parquet transformation script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from awsglue.transforms import * | |
from awsglue.utils import getResolvedOptions | |
from pyspark.context import SparkContext | |
from awsglue.context import GlueContext | |
from awsglue.job import Job | |
## @params: [JOB_NAME] | |
args = getResolvedOptions(sys.argv, ['JOB_NAME']) | |
bucketpathparam = getResolvedOptions(sys.argv, ['s3_path']) | |
databasenameparam = getResolvedOptions(sys.argv, ['database_name']) | |
tablenameparam = getResolvedOptions(sys.argv, ['table_name']) | |
# Construct referenceable paths | |
bucketpath = bucketpathparam['s3_path'] | |
databasename = databasenameparam['database_name'] | |
tablename = tablenameparam['table_name'] | |
sc = SparkContext() | |
glueContext = GlueContext(sc) | |
spark = glueContext.spark_session | |
job = Job(glueContext) | |
job.init(args['JOB_NAME'], args) | |
## @type: DataSource | |
## @args: [database = "<database-name>", table_name = "<table-name>", transformation_ctx = "datasource0"] | |
## @return: datasource0 | |
## @inputs: [] | |
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = databasename, table_name = tablename, transformation_ctx = "datasource0") | |
## @type: DropNullFields | |
## @args: [transformation_ctx = "dropnullfields3"] | |
## @return: dropnullfields3 | |
## @inputs: [frame = resolvechoice2] | |
dropnullfields3 = DropNullFields.apply(frame = datasource0, transformation_ctx = "dropnullfields3") | |
## @type: DataSink | |
## @args: [connection_type = "s3", connection_options = {"path": "s3://<s3-bucket-name>"}, format = "parquet", transformation_ctx = "datasink4"] | |
## @return: datasink4 | |
## @inputs: [frame = dropnullfields3] | |
datasink4 = glueContext.write_dynamic_frame.from_options(frame = dropnullfields3, connection_type = "s3", connection_options = {"path": bucketpath, "partitionKeys": ["year", "month", "day"]}, format = "parquet", transformation_ctx = "datasink4") | |
job.commit() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment