Last active
November 12, 2015 01:06
-
-
Save alarrosa14/a8c43004d0ef6a26890d to your computer and use it in GitHub Desktop.
A sequential kmeans algorithm implementation.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdlib.h> | |
#include <math.h> | |
#include <limits.h> | |
#include <float.h> | |
#include <stdio.h> | |
#define N 300000 | |
#define K 100 | |
#define TOLERANCE 0.00001 | |
#define SEED 11 | |
typedef struct{ | |
double x; | |
double y; | |
} Point; | |
double distance(Point p1, Point p2) { | |
Point diff; | |
diff.x = p1.x - p2.x; | |
diff.y = p1.y - p2.y; | |
return (double) sqrt(diff.x*diff.x + diff.y*diff.y); | |
} | |
void kmeans(Point* data, Point* means) { | |
int p, k; | |
int closerGroup; | |
double dist, minDist; | |
double prevError, error = DBL_MAX; | |
int* groupForPoint = (int*) malloc(N*sizeof(int)); | |
Point pAdd; | |
int n, iter; | |
iter= 1; | |
do { | |
printf("Step %d\n", iter++); | |
prevError = error; | |
error = 0; | |
for (p = 0; p < N; p++) { | |
minDist = DBL_MAX; | |
closerGroup = 0; | |
for (k = 0; k < K; k++) { | |
dist = distance(data[p], means[k]); | |
if (dist < minDist) { | |
minDist = dist; | |
closerGroup = k; | |
} | |
} | |
error += minDist; | |
groupForPoint[p] = closerGroup; | |
} | |
for (k = 0; k < K; k++) { | |
pAdd.x = 0; pAdd.y = 0; | |
n = 0; | |
for (p = 0; p < N; p++) { | |
if (groupForPoint[p] == k) { | |
pAdd.x += data[p].x; | |
pAdd.y += data[p].y; | |
n++; | |
} | |
} | |
if (n > 0) { | |
means[k].x = pAdd.x / n; | |
means[k].y = pAdd.y / n; | |
} | |
} | |
} while (fabs(error - prevError) > TOLERANCE); | |
free(groupForPoint); | |
} | |
int main(void) { | |
printf("N: %d K: %d\n", N, K); | |
int i; | |
Point* data = (Point*)malloc(N*sizeof(Point)); | |
Point* means = (Point*)malloc(K*sizeof(Point)); | |
srand(SEED); | |
/* Cargamos puntos */ | |
for (i = 0; i < N; i++) { | |
data[i].x = (double)rand()/RAND_MAX; | |
data[i].y = (double)rand()/RAND_MAX; | |
} | |
/* Inicializamos las medias */ | |
for (i = 0; i < K; i++) { | |
means[i].x = (double)rand()/RAND_MAX; | |
means[i].y = (double)rand()/RAND_MAX; | |
} | |
kmeans(data, means); | |
for (i = 0; i < K; i++) | |
printf("%f, %f\n", means[i].x, means[i].y); | |
free(data); | |
free(means); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment