-
-
Save alazyer/9478812 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%% Read Netflix dataset | |
A = readSMAT('/scratch/dgleich/netflix/netflix.smat'); | |
k = [10 25 50 100 150 200]; | |
l = size(k,2); | |
%% Matlab's SVDS | |
for i= 1:l | |
tic; | |
[U,S,V] = svds(A,k(i)); | |
toc | |
file = strcat('test1_',int2str(k(i)), '.mat'); | |
d = diag(S); | |
save(file, 'd'); | |
end | |
%% Using eigs() on A*A' | |
m = size(A,1); | |
Cx = @(x) A*(A'*x); | |
for i= 1:l | |
tic; | |
[V D]=eigs(Cx,m,k(i),'LA',struct('issym',1,'disp',0)); | |
toc | |
file = strcat('test2_',int2str(k(i)), '.mat'); | |
d = diag(D); | |
save(file, 'd'); | |
end | |
%% Using Propack. | |
addpath('/homes/hou13/fall2013/MR_SVD_test/PROPACK/matlab'); | |
m = size(A,1); n = size(A,2); | |
Ax=@(x) A*x; | |
Atx=@(x) A'*x; | |
for i= 1:l | |
tic; | |
[UD D VD]=lansvd(Ax,Atx,m,n,k(i),'L'); | |
toc | |
file = strcat('test3_',int2str(k(i)), '.mat'); | |
d = diag(D); | |
save(file, 'd'); | |
end |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from time import time | |
from scipy.sparse import csc_matrix | |
from scipy.linalg import svd | |
from pypropack import svdp | |
from scipy.sparse.linalg import svds | |
from sparsesvd import sparsesvd | |
import scipy.io | |
if __name__ == '__main__': | |
D = scipy.io.loadmat('/u/puma/hou13/fall2013/MR_SVD_test/netflix.mat') | |
M = D['A'] | |
#M = '/scratch/dgleich/netflix/netflix.smat' | |
ks = [10, 25, 50, 100, 150, 200] | |
# PROPACK | |
times1 = [] | |
for k in ks: | |
t0 = time() | |
res1 = svdp(M, k, kmax = 1000, compute_u=False, compute_v=False) | |
t1 = time() | |
t = t1 - t0 | |
times1.append(t) | |
print k, t | |
scipy.io.savemat('test1.mat',{'d':res1}) | |
# ARPACK | |
times2 = [] | |
for k in ks: | |
t0 = time() | |
res2 = svds(M, k, return_singular_vectors = False) | |
t1 = time() | |
t = t1 - t0 | |
times2.append(t) | |
print k, t | |
scipy.io.savemat('test2.mat',{'d':res2}) | |
# SVDLIBC | |
times3 = [] | |
for k in ks: | |
t0 = time() | |
u,res3,v = sparsesvd(M, k) | |
t1 = time() | |
t = t1 - t0 | |
times1.append(t) | |
print k, t | |
scipy.io.savemat('test3.mat',{'d':res3}) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment