Last active
August 8, 2023 07:49
-
-
Save albanD/18c240bd2e09f9d93f5c4a0c9ccda39e to your computer and use it in GitHub Desktop.
PyTorch optimizer as hook
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.optim.sgd import sgd | |
import gc | |
import objgraph | |
import weakref | |
def all(): | |
# Only a subset of the args you could have | |
def set_sgd_hook(mod, p, lr, weight_decay, momentum): | |
buff_list = [None] | |
acc_grad = p.view_as(p).grad_fn.next_functions[0][0] | |
# The grad accumulator is a weak ref, so we need to keep it | |
# alive until the Tensor is alive. | |
# Store it on the module to avoid uncollectable ref-cycle | |
if not hasattr(mod, "_acc_grads"): | |
mod._acc_grads = [] | |
mod._acc_grads.append(acc_grad) | |
def sgd_hook(*_unused): | |
# Update the params | |
sgd([p], [p.grad], buff_list, has_sparse_grad=False, foreach=False, | |
weight_decay=weight_decay, momentum=momentum, lr=lr, dampening=0, | |
nesterov=False, maximize=False) | |
# Free up grad memory | |
p.grad = None | |
# We should have an API for post hooks... But we don't have one right now | |
acc_grad.register_hook(sgd_hook) | |
print("Startup", torch.cuda.memory_allocated()) | |
mod = torch.nn.Linear(4, 1).cuda() | |
crit = nn.MSELoss() | |
for p in mod.parameters(): | |
set_sgd_hook(mod, p, lr=.01, weight_decay=0., momentum=0.9) | |
# Make sure the keepalive works well | |
gc.collect() | |
inp = torch.rand(10, 4, device="cuda") | |
target = torch.rand(10, 1, device="cuda") | |
for i in range(11): | |
def eval_one(): | |
print(f"It {i}, {torch.cuda.memory_allocated()}") | |
pred = mod(inp) | |
loss = crit(pred, target) | |
print("Before backward", torch.cuda.memory_allocated()) | |
loss.backward() | |
print(f"Loss: {loss.item()}") | |
eval_one() | |
if i == 0: | |
print("No memory decrease due to optimizer state lazy initialization") | |
print("End of iteration", torch.cuda.memory_allocated()) | |
return weakref.ref(mod.weight) | |
w = all() | |
print("Done, final memory", torch.cuda.memory_allocated()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Output from the script: