Created
September 27, 2011 18:18
-
-
Save albertsun/1245817 to your computer and use it in GitHub Desktop.
Pareto Interpolation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# http://en.wikipedia.org/wiki/Pareto_interpolation | |
# Example Pareto interpolation to calculate household median income. | |
# Assumes that incomedata is a list of 17 elements containing table B19001 from the United States ACS 5-year summary file | |
from math import log | |
def calculate_median(incomedata): | |
bucket_tops = [10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 60000, 75000, 100000, 125000, 150000, 200000] | |
total = incomedata[0] | |
for i in range(2,18): | |
if (sum(incomedata[1:i]) > total/2.0): | |
lower_bucket = i-2 | |
upper_bucket = i-1 | |
if (i == 17): | |
break | |
else: | |
lower_sum = sum(incomedata[1:lower_bucket+1]) | |
upper_sum = sum(incomedata[1:upper_bucket+1]) | |
lower_perc = float(lower_sum)/total | |
upper_perc = float(upper_sum)/total | |
lower_income = bucket_tops[lower_bucket-1] | |
upper_income = bucket_tops[upper_bucket-1] | |
break | |
if (i==17): | |
return 200000 | |
#now use pareto interpolation to find the median within this range | |
if (lower_perc == 0.0): | |
sample_median = lower_income + ((upper_income - lower_income)/2.0) | |
else: | |
theta_hat = (log(1.0 - lower_perc) - log(1.0 - upper_perc)) / (log(upper_income) - log(lower_income)) | |
k_hat = pow( (upper_perc - lower_perc) / ( (1/pow(lower_income, theta_hat)) - (1/pow(upper_income, theta_hat)) ), (1/theta_hat) ) | |
sample_median = k_hat * pow(2, (1/theta_hat)) | |
return sample_median |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment