Created
August 21, 2014 02:20
-
-
Save alculquicondor/118ccc87675fefe8b0dc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <cmath> | |
#include <vector> | |
#include <algorithm> | |
using namespace std; | |
template<typename T> | |
struct p2d { | |
T x, y; | |
p2d(T x = 0, T y = 0) : x(x), y(y) {} | |
p2d(const p2d &a) : x(a.x), y(a.y) {} | |
p2d operator - (const p2d &a) const { | |
return p2d(x-a.x, y-a.y); | |
} | |
p2d operator + (const p2d &a) const { | |
return p2d(x+a.x, y+a.y); | |
} | |
void operator -= (const p2d &a) { | |
x -= a.x, y -= a.y; | |
} | |
void operator += (const p2d &a) { | |
x += a.x, y += a.y; | |
} | |
bool operator == (const p2d &a) const { | |
return x == a.x and y == a.y; | |
} | |
bool operator != (const p2d &a) const { | |
return x != a.x or y != a.y; | |
} | |
T norm2() const { | |
return x * x + y * y; | |
} | |
T norm() const { | |
return sqrt(norm2()); | |
} | |
}; | |
template<typename T> | |
T dist(const p2d<T> &a, const p2d<T> &b) { | |
return (a-b).norm(); | |
} | |
typedef p2d<double> pt; | |
typedef pair<int, int> pii; | |
struct ClosestPair { | |
const vector<pt> &P; | |
ClosestPair(const vector<pt> &P) : P(P) { } | |
double center(const vector<size_t> &V, double x, double d, pii &ans) { | |
vector<size_t> S; | |
for (size_t id : V) | |
if (P[id].x > x-d and P[id].x < x+d) | |
S.push_back(id); | |
double r = 1e300, t; | |
for (size_t i = 0; i < S.size(); ++i) | |
for (size_t j = i + 1; j < S.size() and P[S[j]].y - P[S[i]].y < d; ++j) | |
if ((t = dist(P[S[j]], P[S[i]])) < r) { | |
r = t; | |
ans = {S[i], S[j]}; | |
} | |
return r; | |
} | |
double recu(const vector<size_t> &H, const vector<size_t> &V, pii &ans) { | |
const size_t n = H.size(); | |
if (n <= 1) | |
return 1e300; | |
const size_t m = n >> 1; | |
vector<bool> left(n); | |
vector<size_t> vert, T(n), hori; | |
vert.reserve(m); | |
hori.reserve(m); | |
for (size_t i = 0; i < m; ++i) | |
left[H[i]] = true; | |
int j = 0; | |
for (size_t i = 0; i < n; ++i) | |
if (left[i]) { | |
vert.push_back(V[i]); | |
T[i] = j++; | |
} | |
for (size_t i = 0; i < m; ++i) | |
hori.push_back(T[H[i]]); | |
pii pl, pr, pc; | |
double dl = recu(hori, vert, pl); | |
vert.clear(); | |
vert.reserve(n-m); | |
hori.clear(); | |
hori.reserve(n-m); | |
j = 0; | |
for (size_t i = 0; i < n; ++i) | |
if (not left[i]) { | |
vert.push_back(V[i]); | |
T[i] = j++; | |
} | |
for (size_t i = m; i < n; ++i) | |
hori.push_back(T[H[i]]); | |
double dr = recu(hori, vert, pr), d = min(dl, dr); | |
double dc = center(V, P[V[H[m]]].x, d, pc); | |
return min(d, dc); | |
} | |
double calc(pii &ans) { | |
const size_t n = P.size(); | |
vector<size_t> vert(n), hori(n), T(n); | |
for (size_t i = 0; i < n; ++i) | |
hori[i] = vert[i] = i; | |
sort(vert.begin(), vert.end(), [&](size_t i, size_t j) { | |
return P[i].y < P[j].y; }); | |
for (size_t i = 0; i < n; ++i) | |
T[vert[i]] = i; | |
sort(hori.begin(), hori.end(), [&](size_t i, size_t j) { | |
return P[i].x < P[j].x; }); | |
for (size_t i = 0; i < n; ++i) | |
hori[i] = T[hori[i]]; | |
return recu(hori, vert, ans); | |
} | |
}; | |
int main() { | |
int n, x, y; | |
cin >> n; | |
vector<pt> P; | |
P.reserve(n); | |
for (int i = 0; i < n; ++i) { | |
cin >> x >> y; | |
P.push_back(pt(x, y)); | |
} | |
pii p; | |
cout << ClosestPair(P).calc(p) << endl; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment