Last active
May 6, 2017 12:38
-
-
Save alebian/554fae98f3d14b848c70605e377d1736 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class SimplePerceptron: | |
def __init__(self, input_layer_size, output_layer_size, coeff = 0.05): | |
self._bias = -1 | |
self._coeff = coeff | |
self._input_layer_size = input_layer_size | |
self._output_layer_size = output_layer_size | |
# Weights is a matrix in which each column represents the weights from every input | |
# to each output and has the bias in each column | |
self._weights = np.random.rand(input_layer_size + 1, output_layer_size) - 0.5 | |
self._weights[0:(output_layer_size - 1)] = self._bias | |
self._activation_function = lambda x: np.sign(x) | |
self._activation_function_derivative = lambda x: 1 | |
def fit(self, inputs, desired_output, iterations = 10000): | |
fit_inputs_size = inputs.shape[0] | |
inputs_with_bias = np.column_stack([(np.zeros(fit_inputs_size) + self._bias), inputs]) | |
out = np.zeros((fit_inputs_size, self._output_layer_size)) | |
for _ in range(iterations): | |
# Update weights for each output | |
H = np.dot(inputs_with_bias, self._weights) | |
out = np.array(list(map(self._activation_function, H))) | |
delta = desired_output - out | |
for i in range(fit_inputs_size): | |
for j in range(self._output_layer_size): | |
for k in range(self._input_layer_size + 1): | |
self._weights[k][j] = self._weights[k][j] + self._coeff * delta[i][j] * inputs_with_bias[i][k] * self._activation_function_derivative(H[i][j]) | |
return out | |
def predict(self, input_array): | |
input_with_bias = np.concatenate(([self._bias], input_array)) | |
out = np.zeros(self._output_layer_size) | |
for i in range(self._output_layer_size): | |
h = np.dot(input_with_bias, self._weights[:,i]) | |
out[i] = self._activation_function(h) | |
return out | |
training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) | |
number_of_training_inputs = training_inputs.shape[0] | |
desired_output = np.array([[-1], [1], [1], [1]]) | |
print('Training logic OR:') | |
or_net = SimplePerceptron(2, 1) | |
out = or_net.fit(training_inputs, desired_output) | |
print('[+] Training complete. Weights:') | |
print(or_net._weights) | |
print('[+] Trained output:') | |
print(out) | |
training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) | |
number_of_training_inputs = training_inputs.shape[0] | |
desired_output = np.array([[-1], [-1], [-1], [1]]) | |
print('Training logic AND:') | |
and_net = SimplePerceptron(2, 1) | |
out = and_net.fit(training_inputs, desired_output) | |
print('[+] Training complete. Weights:') | |
print(and_net._weights) | |
print('[+] Trained output:') | |
print(out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment