Last active
December 7, 2015 17:23
-
-
Save alejandrogallo/04387f70f0fdf6b6a1b4 to your computer and use it in GitHub Desktop.
Simple mandelbrot set calculation algorithm in Fortran
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
program mandelbrot | |
implicit none | |
Integer, parameter :: GRID = 1000, ITER = 90 | |
Complex :: c | |
Integer :: i, j | |
real :: xpart, ypart | |
Logical :: converges | |
DO i=0, GRID | |
Do j = 0, GRID | |
xpart = -2.0 + 4.0*real(i)/real(GRID) | |
ypart = -2.0 + 4.0*real(j)/real(GRID) | |
c = CMPLX(xpart, ypart) | |
IF (converges(c, ITER)) THEN | |
print *, c | |
END IF | |
END DO | |
END DO | |
end program mandelbrot | |
function converges (c, ITER) result (convergence) | |
implicit none | |
Complex, INTENT(IN) :: c | |
Integer, INTENT(IN) :: ITER | |
Real, parameter :: THRESHOLD = 2.0 | |
Integer :: i | |
Complex :: buffer | |
Logical :: convergence | |
buffer = (0,0) | |
DO i=0, ITER | |
buffer = buffer**2 + c | |
IF (ABS(buffer)>THRESHOLD) THEN | |
convergence = .false. | |
RETURN | |
END IF | |
END DO | |
convergence = .true. | |
end function |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment