Created
November 19, 2018 15:47
-
-
Save alendit/32ebfbc1e5a4c2ff3190ed8b77e0a990 to your computer and use it in GitHub Desktop.
Build 1kk string with 10 chars each using numba builder.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from fletcher._numba_compat import NumbaString, NumbaStringArray\n", | |
"from fletcher._algorithms import _startswith\n", | |
"import fletcher as fr\n", | |
"import numba\n", | |
"import pyarrow as pa" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from random import choice\n", | |
"from string import ascii_letters" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"char_arr = np.zeros((10 ** 7,), dtype=np.uint8)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"for i in range(len(char_arr)):\n", | |
" char_arr[i] = ord(choice(ascii_letters))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([100, 109, 103, 104, 81, 70, 118, 78, 71, 105], dtype=uint8)" | |
] | |
}, | |
"execution_count": 32, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"char_arr[10:20]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"@numba.njit(nogil=True)\n", | |
"def build_strs(arr):\n", | |
" sb = fr._numba_compat.NumbaStringArrayBuilder(10 ** 6, 10 ** 7)\n", | |
" for i in range(0, 10 ** 6, 10):\n", | |
" for j in range(0, 10):\n", | |
" sb.put_byte(arr[i + j])\n", | |
" sb.finish_string()\n", | |
" sb.finish()\n", | |
" return NumbaStringArray(sb.missing, sb.offsets, sb.data, 0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"39.1 ms ± 211 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit build_strs(char_arr)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"s_arr = build_strs(char_arr)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([100, 109, 103, 104, 81, 70, 118, 78, 71, 105], dtype=int32)" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"s_arr.decode(1)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment