Created
October 5, 2018 04:44
-
-
Save alex-petrenko/937da36b18bf58a830cf49710de81804 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import math | |
import random | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
def encoder(observation): | |
with tf.variable_scope('encoder', reuse=tf.AUTO_REUSE): | |
return tf.layers.dense(observation, 32) | |
def decoder(z, len_sample): | |
with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE): | |
x = tf.layers.dense(z, 32, tf.nn.relu) | |
x = tf.layers.dense(x, len_sample) | |
return x | |
def get_posterior(x0, xt): | |
# MLP | |
x_input = tf.concat([x0, xt], axis=1) | |
hidden = tf.layers.dense(x_input, 32, tf.nn.relu) | |
# z | |
mu = tf.layers.dense(hidden, 32) | |
sigma = tf.layers.dense(hidden, 32, activation=tf.nn.softplus) # softplus is log(exp(x) + 1) | |
return tf.contrib.distributions.MultivariateNormalDiag(mu, sigma) | |
def main(): | |
# inference network | |
# input | |
len_sample = 40 | |
i0 = tf.placeholder(tf.float32, shape=[None, len_sample]) | |
it = tf.placeholder(tf.float32, shape=[None, len_sample]) | |
# encoding | |
x0 = encoder(i0) | |
xt = encoder(it) | |
posterior = get_posterior(x0, xt) | |
z_inf = posterior.sample() | |
# decoder | |
x_inf = decoder(z_inf, len_sample) | |
# prior network | |
lstm_cell = tf.nn.rnn_cell.LSTMCell(64) | |
# rnn_input should be of shape [time_steps, batch_size, input_size] | |
time_steps = 60 | |
# input is always x0 | |
rnn_inputs = [x0] * time_steps | |
rnn_outputs, _ = tf.nn.static_rnn(lstm_cell, rnn_inputs, dtype=tf.float32) | |
mu_prior = tf.layers.dense(rnn_outputs[-1], 32) | |
sigma_prior = tf.layers.dense(rnn_outputs[-1], 32, activation=tf.nn.softplus) | |
prior = tf.contrib.distributions.MultivariateNormalDiag(mu_prior, sigma_prior) | |
sample_prior = prior.sample() | |
predicted = decoder(sample_prior, len_sample) | |
# inference network loss | |
loss_inf = tf.reduce_mean(tf.losses.mean_squared_error(it, x_inf) + posterior.kl_divergence(prior)) | |
# prior network loss | |
loss_prior = tf.reduce_mean(prior.kl_divergence(posterior)) | |
loss = loss_inf + loss_prior | |
opt = tf.train.AdamOptimizer(learning_rate=2e-3).minimize(loss) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
for epoch in range(4000): | |
# generate dataset | |
t = np.linspace(-5 * np.pi, 5 * np.pi, 500) | |
y = np.sin(t) | |
noise = np.random.normal(0, 0.02, size=500) | |
y = y + noise | |
num_y = len(y) | |
trajectories = [] | |
for idx in range(len_sample, num_y - time_steps): | |
i0_data = y[(idx - len_sample):idx] | |
it_data = y[(idx + time_steps - len_sample):(idx + time_steps)] | |
trajectories.append((i0_data, it_data)) | |
np.random.shuffle(trajectories) | |
batch_size = 256 | |
batch_idx = 0 | |
batches = [] | |
while batch_idx < len(trajectories) - batch_size: | |
minibatch = trajectories[batch_idx:batch_idx + batch_size] | |
batches.append(minibatch) | |
batch_idx += batch_size | |
for batch_i, batch in enumerate(batches): | |
i0_batch = [item[0] for item in batch] | |
it_batch = [item[1] for item in batch] | |
l_val, l_inf, l_pr, _ = sess.run( | |
[loss, loss_inf, loss_prior, opt], | |
feed_dict={i0: i0_batch, it: it_batch}, | |
) | |
if (epoch + 1) % 50 == 0: | |
print('Epoch #', epoch, 'Loss: ', l_val, 'loss_inf:', l_inf, 'loss_prior:', l_pr) | |
if (epoch + 1) % 1000 == 0: | |
# visualize the prediction | |
trajectory, ground_truth = batches[0][0] | |
predicted_trajectories = [] | |
for i in range(3): | |
p_sample = sess.run(predicted, feed_dict={i0: [trajectory]}) | |
predicted_trajectories.append(p_sample[0]) | |
t1 = np.arange(0, len_sample) | |
t2 = np.arange(time_steps, time_steps + len_sample) | |
plt.plot(t1, trajectory) | |
plt.plot(t2, ground_truth) | |
for i in range(3): | |
plt.plot(t2, predicted_trajectories[i]) | |
plt.xlabel('time') | |
plt.ylabel('state') | |
plt.axis('tight') | |
plt.show() | |
print('Exiting...') | |
if __name__ == '__main__': | |
sys.exit(main()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment