Created
April 8, 2019 02:13
-
-
Save alex-petrenko/c4fe6201749d9bb0cef5e642ce9a511a to your computer and use it in GitHub Desktop.
dmlab_gym_with_cache.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import shutil | |
import time | |
from os.path import join | |
import cv2 | |
import deepmind_lab | |
import gym | |
import numpy as np | |
from gym.utils import seeding | |
from utils.utils import project_root, ensure_dir_exists | |
ACTION_SET = ( | |
(0, 0, 0, 0, 0, 0, 0), # Idle | |
(0, 0, 0, 1, 0, 0, 0), # Forward | |
(0, 0, 0, -1, 0, 0, 0), # Backward | |
(-20, 0, 0, 0, 0, 0, 0), # Look Left | |
(20, 0, 0, 0, 0, 0, 0), # Look Right | |
) | |
class LevelCache: | |
def __init__(self, cache_dir): | |
ensure_dir_exists(cache_dir) | |
self._cache_dir = cache_dir | |
def fetch(self, key, pk3_path): | |
path = join(self._cache_dir, key) | |
if os.path.isfile(path): | |
# copy the cached file to the path expected by DeepMind Lab | |
shutil.copyfile(path, pk3_path) | |
return True | |
return False | |
def write(self, key, pk3_path): | |
path = os.path.join(self._cache_dir, key) | |
if not os.path.isfile(path): | |
# copy the cached file DeepMind Lab has written to the cache directory | |
shutil.copyfile(pk3_path, path) | |
level_cache = LevelCache(join(project_root(), '.dmlab_cache')) | |
class DmlabGymEnv(gym.Env): | |
def __init__(self, level, action_repeat, extra_cfg=None): | |
self._width = self._height = 84 | |
self._main_observation = 'DEBUG.CAMERA_INTERLEAVED.PLAYER_VIEW_NO_RETICLE' | |
self._action_repeat = action_repeat | |
self._random_state = None | |
observation_format = [self._main_observation, 'DEBUG.POS.TRANS'] | |
config = {'width': self._width, 'height': self._height} | |
if extra_cfg is not None: | |
config.update(extra_cfg) | |
config = {k: str(v) for k, v in config.items()} | |
renderer = 'hardware' | |
self._dmlab = deepmind_lab.Lab( | |
level, observation_format, config=config, renderer=renderer, level_cache=level_cache, | |
) | |
self._action_set = ACTION_SET | |
self._action_list = np.array(self._action_set, dtype=np.intc) # DMLAB requires intc type for actions | |
self._last_observation = None | |
self._render_scale = 5 | |
self._render_fps = 30 | |
self._last_frame = time.time() | |
self.action_space = gym.spaces.Discrete(len(self._action_set)) | |
self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self._height, self._width, 3), dtype=np.uint8) | |
self.seed() | |
def seed(self, seed=None): | |
initial_seed = seeding.hash_seed(seed) % 2 ** 32 | |
self._random_state = np.random.RandomState(seed=initial_seed) | |
return [initial_seed] | |
def reset(self): | |
self._dmlab.reset(seed=self._random_state.randint(0, 2 ** 31 - 1)) | |
self._last_observation = self._dmlab.observations()[self._main_observation] | |
return self._last_observation | |
def step(self, action): | |
reward = self._dmlab.step(self._action_list[action], num_steps=self._action_repeat) | |
done = not self._dmlab.is_running() | |
if not done: | |
self._last_observation = self._dmlab.observations()[self._main_observation] | |
info = {'num_frames': self._action_repeat} | |
return self._last_observation, reward, done, info | |
def render(self, mode='human'): | |
if self._last_observation is None and self._dmlab.is_running(): | |
self._last_observation = self._dmlab.observations()[self._main_observation] | |
img = self._last_observation | |
if mode == 'rgb_array': | |
return img | |
elif mode != 'human': | |
raise Exception(f'Rendering mode {mode} not supported') | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
scale = self._render_scale | |
img_big = cv2.resize(img, (self._width * scale, self._height * scale), interpolation=cv2.INTER_NEAREST) | |
cv2.imshow('dmlab', img_big) | |
since_last_frame = time.time() - self._last_frame | |
wait_time_sec = max(1.0 / self._render_fps - since_last_frame, 0.001) | |
wait_time_ms = max(int(1000 * wait_time_sec), 1) | |
cv2.waitKey(wait_time_ms) | |
self._last_frame = time.time() | |
def close(self): | |
self._dmlab.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment