Created
June 5, 2017 18:33
-
-
Save alexandari/99f7f921b512496a9563691e15d846b2 to your computer and use it in GitHub Desktop.
SFC Layers Example: Basset Model with SFC Layer Setup
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#install keras from https://github.com/kundajelab/keras/tree/keras_1 | |
from __future__ import print_function | |
import keras | |
import numpy as np | |
np.random.seed(1) | |
#build a model | |
model = keras.models.Sequential() | |
model.add(keras.layers.convolutional.Convolution1D(input_shape=(1000,4), | |
nb_filter=300, | |
filter_length=19)) | |
model.add(keras.layers.normalization.BatchNormalization()) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.pooling.MaxPooling1D(pool_length=3, stride=3)) | |
model.add(keras.layers.convolutional.Convolution1D(nb_filter=200, | |
filter_length=11)) | |
model.add(keras.layers.normalization.BatchNormalization()) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.pooling.MaxPooling1D(pool_length=4, stride=4)) | |
model.add(keras.layers.convolutional.Convolution1D(nb_filter=200, | |
filter_length=7)) | |
model.add(keras.layers.normalization.BatchNormalization()) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.pooling.MaxPooling1D(pool_length=4, stride=4)) | |
model.add(keras.layers.convolutional.SeparableFC(symmetric=True, | |
smoothness_second_diff=True, | |
output_dim=1000, | |
smoothness_penalty=10.0, | |
smoothness_l1=True)) | |
model.add(keras.layers.core.Dense(output_dim=1000)) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.core.Dropout(0.3)) | |
model.add(keras.layers.core.Dense(output_dim=1000)) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.core.Dropout(0.3)) | |
model.add(keras.layers.core.Dense(output_dim=10)) | |
model.add(keras.layers.core.Activation("sigmoid")) | |
model.compile(optimizer="Adam", loss="binary_crossentropy") | |
#randomly generate some inputs and get predictions | |
rand_inp = np.random.random((10, 1000, 4)) | |
predict = model.predict(rand_inp) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment