Last active
June 15, 2025 18:32
-
-
Save alexanderhenne/efd0c03717e0d4657c3e5db01c8075e8 to your computer and use it in GitHub Desktop.
DINOv2 ViT-S/14 conversion to Core ML .mlpackage (CLS token)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import coremltools as ct | |
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg') | |
img_size = 518 # only 518 supported due to Core ML ops limitation | |
example_input = torch.randn(1, 3, img_size, img_size) | |
wrapper = model.eval() | |
with torch.no_grad(): | |
wrapper.eval() | |
traced_model = torch.jit.trace(wrapper, example_input) | |
from coremltools.converters.mil import Builder as mb | |
from coremltools.converters.mil import register_torch_op | |
@register_torch_op | |
def _upsample_bicubic2d_aa(context, node): | |
a = context[node.inputs[0]] | |
output_size = context[node.inputs[1]].val | |
align_corners = context[node.inputs[2]].val | |
scale = context[node.inputs[3]] | |
if scale is None: | |
input_height = a.shape[-2] | |
input_width = a.shape[-1] | |
scale_h = output_size[0] / input_height | |
scale_w = output_size[1] / input_width | |
else: | |
scale_h = scale.val[0] | |
scale_w = scale.val[1] | |
x = mb.upsample_bilinear(x=a, scale_factor_height=scale_h, scale_factor_width=scale_w, align_corners=align_corners, name=node.name) | |
context.add(x) | |
model_from_trace = ct.convert( | |
traced_model, | |
inputs=[ct.ImageType(name="input", shape=example_input.shape, scale=1/255.0, bias=[-0.485/0.229, -0.456/0.224, -0.406/0.225])], | |
outputs=[ct.TensorType(name="cls_token")], | |
compute_precision=ct.precision.FLOAT16 | |
) | |
model_from_trace.save("dinov2_vits14_reg_518.mlpackage") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Derived from https://github.com/VimalMollyn/dinov2-coreml