Last active
July 21, 2023 14:20
-
-
Save alexeyev/e19b016699890bdbf731dedd4be07d2e to your computer and use it in GitHub Desktop.
Converting Doccano NER task export (JSONL file) to a CONLL03-formatted file
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
import re | |
from builtins import frozenset | |
from typing import List, Tuple, Set | |
def find_occurrences(s, c): | |
return [i for i, letter in enumerate(s) if letter == c] | |
def annotation2sequences(original_text: str, label_spans: List[List], excluded_labels: Set = frozenset([]), | |
already_tokenized: bool = True, tokenize_fn=None): | |
original_text = original_text.rstrip() | |
# building tokens' spans | |
if already_tokenized: | |
token_spans = [[0]] | |
for m in re.finditer(" +", original_text): | |
token_spans[-1].append(m.start()) | |
token_spans.append([m.end()]) | |
token_spans[-1].append(len(original_text)) | |
else: | |
token_spans = tokenize_fn(original_text) | |
# splitting into sentences | |
newlines_positions = find_occurrences(original_text, "\n") + [len(original_text)] | |
sentence_boundaries = [0] | |
for token_number, (l, r) in enumerate(token_spans): | |
if r == newlines_positions[0]: | |
sentence_boundaries.append(token_number + 1) | |
newlines_positions = newlines_positions[1:] | |
elif r > newlines_positions[0]: | |
raise Exception | |
# print(sentence_boundaries) | |
tokens = [original_text[fr: to] for fr, to in token_spans] | |
labels = ["O"] * len(token_spans) | |
curr_token_idx = 0 | |
# everything that intersects -- gets tagged as the corresponding label | |
for span in label_spans: | |
prefix = "B-" | |
label_from, label_to, tag = span | |
while token_spans[curr_token_idx][1] <= label_from: | |
curr_token_idx += 1 | |
while token_spans[curr_token_idx][0] < label_to: | |
if not tag in excluded_labels: | |
labels[curr_token_idx] = prefix + tag | |
prefix = "I-" | |
curr_token_idx += 1 | |
assert len(tokens) == len(labels) | |
results = [] | |
for i in range(len(sentence_boundaries) - 1): | |
results.append((i + 1, list(zip( | |
tokens[sentence_boundaries[i]:sentence_boundaries[i + 1]], | |
labels[sentence_boundaries[i]:sentence_boundaries[i + 1]])))) | |
return results | |
def seq2conll2003(list_of_lists_of_pairs: List[List[Tuple[str, str]]]): | |
result = "" | |
sentence_number = 1 | |
for docid, sentences in list_of_lists_of_pairs: | |
for sentid, pairs in sentences: | |
result += f"# {sentence_number} {docid} {sentid}\n" | |
result += "\n".join([f"{t}\t-\t-\t{l}" for t, l in pairs]) | |
result += "\n\n" | |
sentence_number += 1 | |
return result.strip() | |
if __name__ == "__main__": | |
import json | |
from apertium_tokenizer import ApertiumSimpleTokenizer | |
tokenizer = ApertiumSimpleTokenizer() | |
custom_tokenize = lambda sentence: list(tokenizer.span_tokenize(sentence)) | |
all_results_with_custom_tokenization = [] | |
for line_idx, line in enumerate(open("Anton.jsonl", "r+", encoding="utf-8"), 1): | |
if line_idx > 3: | |
break | |
ann_data = json.loads(line.strip()) | |
idx, orig_text, label_spans = ann_data["id"], ann_data["text"], ann_data["label"] | |
annotated_enumerated_sentences = annotation2sequences(orig_text, label_spans, | |
already_tokenized=False, | |
excluded_labels={"PERIOD", "MEASURE", | |
"IDENTIFIER", "ACRONYM"}, | |
tokenize_fn=custom_tokenize) | |
all_results_with_custom_tokenization.append((line_idx, annotated_enumerated_sentences)) | |
with open("sample.conll2003-formatted.txt", "w+", encoding="utf-8") as wf: | |
wf.write(seq2conll2003(all_results_with_custom_tokenization)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
MIT License | |
Copyright (c) 2023 Anton Alekseev | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment