Created
April 22, 2014 13:03
-
-
Save alexhanna/11178332 to your computer and use it in GitHub Desktop.
Gist for generating sentiment scores for political tweets from the gardenhose and a focused sample
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import csv, logging, math, os.path | |
import pickle, random, re, string | |
import time | |
import numpy as np | |
import pandas as pd | |
import nltk.data | |
from nltk.tokenize.regexp import WordPunctTokenizer | |
def repRT(row): | |
if not pd.isnull(row['rt-text']): | |
return row['rt-text'] | |
else: | |
return row['text'] | |
def sentiment_score(text): | |
text = text.translate(string.maketrans("",""), string.punctuation) | |
words = set(toke.tokenize(text)) | |
if not len(words): | |
return 0 | |
pos = list(pos_words & words) | |
neg = list(neg_words & words) | |
return (len(pos) - len(neg)) / len(words) | |
def toMin(x): | |
x = time.strptime(x, '%Y-%m-%d %H:%M:%S') | |
return time.strftime('%Y-%m-%d %H:%M:00', x) | |
## positive and negative words from http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html | |
## cite the following: | |
# Minqing Hu and Bing Liu. "Mining and Summarizing Customer Reviews." | |
# Proceedings of the ACM SIGKDD International Conference on Knowledge | |
# Discovery and Data Mining (KDD-2004), Aug 22-25, 2004, Seattle, | |
# Washington, USA, | |
# Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing | |
# and Comparing Opinions on the Web." Proceedings of the 14th | |
# International World Wide Web conference (WWW-2005), May 10-14, | |
# 2005, Chiba, Japan. | |
toke = WordPunctTokenizer() | |
pos_words = set(open("../data/positive.txt", "r").read().split("\n")) | |
neg_words = set(open("../data/negative.txt", "r").read().split("\n")) | |
############################################################################### | |
##### gardenhose | |
############################################################################### | |
gh_cols = ["id_str", "created_at", "text", "user-id_str", "user-name", "user-screen_name", "user-userlevel", | |
"rt-id_str", "rt-created_at", "rt-text", "rt-user-id_str", "rt-user-name", "rt-user-screen_name", "rt-user-userlevel"] | |
## load tweets for gardenhose | |
df = pd.read_csv("/project/hanna/elex2012/gh.20121003-usprez.csv", | |
sep = "\t", quoting = csv.QUOTE_NONE, index_col = False, names = gh_cols) | |
## move RT in main text because of convenience | |
df['text'] = df.apply(repRT, axis = 1) | |
## lowercase | |
df['text'] = df['text'].apply(str.lower) | |
df['obama'] = pd.Series(0) | |
df['romney'] = pd.Series(0) | |
## Index tweets that mention only Obama or Romney | |
df['obama'] = df['text'].apply(lambda x: 1 if 'obama' in x and 'romney' not in x else 0) | |
df['romney'] = df['text'].apply(lambda x: 1 if 'obama' not in x and 'romney' in x else 0) | |
df['score'] = df.text.apply(sentiment_score) | |
df['date'] = df['created_at'].apply(lambda x: toMin(x)) | |
grouped = df.loc[df['obama'] == 1].groupby('date') | |
oscores = grouped['score'].agg([np.mean, np.std]) | |
oscores['person'] = 'obama' | |
grouped = df.loc[df['romney'] == 1].groupby('date') | |
rscores = grouped['score'].agg([np.mean, np.std]) | |
rscores['person'] = 'romney' | |
scores = oscores.append(rscores) | |
scores.to_csv("../data/gh-us-debate-sentiment.csv") | |
############################################################################### | |
##### elex2012 | |
############################################################################### | |
fs_cols = ["id_str", "created_at", "text", "user-id_str", "user-screen_name", | |
"rt-id_str", "rt-created_at", "rt-text", "rt-user-id_str", "rt-user-screen_name"] | |
fs = pd.read_csv("/project/hanna/elex2012/elex2012.20121003.csv", | |
sep = "\t", quoting = csv.QUOTE_NONE, index_col = False, names = fs_cols) | |
ul = pd.read_csv("/home/a/ahanna/sandbox/hadoop/streaming/data/follow-all.txt", | |
sep = "\t", quoting = csv.QUOTE_NONE, index_col = False, names = ['user-id_str', 'user-level']) | |
fs = fs.merge(ul) | |
## move RT in main text because of convenience | |
fs['text'] = fs.apply(repRT, axis = 1) | |
## lowercase | |
fs['text'] = fs['text'].apply(str.lower) | |
fs['obama'] = pd.Series(0) | |
fs['romney'] = pd.Series(0) | |
## Index tweets that mention only Obama or Romney | |
fs['obama'] = fs['text'].apply(lambda x: 1 if 'obama' in x and 'romney' not in x else 0) | |
fs['romney'] = fs['text'].apply(lambda x: 1 if 'obama' not in x and 'romney' in x else 0) | |
fs['score'] = fs.text.apply(sentiment_score) | |
fs['date'] = fs['created_at'].apply(lambda x: toMin(x)) | |
grouped = fs.loc[fs['obama'] == 1].groupby(['date', 'user-level']) | |
oscores = grouped['score'].agg([np.mean, np.std]) | |
oscores['person'] = 'obama' | |
grouped = fs.loc[fs['romney'] == 1].groupby(['date', 'user-level']) | |
rscores = grouped['score'].agg([np.mean, np.std]) | |
rscores['person'] = 'romney' | |
scores = oscores.append(rscores) | |
scores.to_csv("../data/elex2012-us-debate-sentiment.csv") | |
# scores = pd.DataFrame({ | |
# 'created_at': fs['created_at'], | |
# 'user_level': fs['user-level'], | |
# 'obama': fs['obama'], | |
# 'romney': fs['romney'], | |
# 'score': fs['score'] | |
# }) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment