Created
November 8, 2021 14:39
-
-
Save alexjbest/b6be78b3e061e3500c826a4b2e71f324 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import all | |
/- Checking 78317 declarations (plus 78402 automatically generated ones) in mathlib -/ | |
/- The `generalisation_linter` linter reports: -/ | |
/- typeclass generalisations may be possible -/ | |
-- algebra/add_torsor.lean | |
#print vsub_eq_sub /- _inst_1: add_group ↝ has_sub has_vsub | |
-/ | |
#print set.has_vsub /- T: add_torsor ↝ has_vsub | |
-/ | |
-- algebra/algebra/basic.lean | |
#print algebra.smul_mul_assoc /- _inst_4: algebra ↝ has_scalar is_scalar_tower mul_action | |
-/ | |
#print algebra.bit0_smul_one /- _inst_4: algebra ↝ distrib_mul_action has_scalar module | |
-/ | |
#print algebra.bit0_smul_bit0 /- _inst_4: algebra ↝ distrib_mul_action has_scalar module | |
-/ | |
#print algebra.bit0_smul_bit1 /- _inst_4: algebra ↝ distrib_mul_action has_scalar module | |
-/ | |
#print algebra.bit1_smul_bit1 /- _inst_4: algebra ↝ distrib_mul_action has_scalar module mul_action | |
-/ | |
#print algebra.id.smul_eq_mul /- _inst_1: comm_semiring ↝ has_mul | |
-/ | |
#print algebra.mem_algebra_map_submonoid_of_mem /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
#print algebra.mul_sub_algebra_map_commutes /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print alg_hom.map_inv /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print alg_hom.map_div /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print alg_equiv.map_neg /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print alg_equiv.map_sub /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print ring_hom.map_rat_algebra_map /- _inst_1: ring ↝ semiring | |
_inst_2: ring ↝ semiring | |
-/ | |
#print algebra_compatible_smul /- _inst_5: module ↝ has_scalar mul_action | |
_inst_6: module ↝ has_scalar | |
-/ | |
#print is_scalar_tower.to_smul_comm_class' /- _inst_3: algebra ↝ has_scalar smul_comm_class | |
_inst_5: module ↝ has_scalar smul_comm_class | |
_inst_6: module ↝ has_scalar smul_comm_class | |
_inst_7: is_scalar_tower ↝ smul_comm_class | |
-/ | |
#print smul_algebra_smul_comm /- _inst_3: algebra ↝ has_scalar smul_comm_class | |
_inst_5: module ↝ has_scalar smul_comm_class | |
_inst_6: module ↝ has_scalar smul_comm_class | |
_inst_7: is_scalar_tower ↝ smul_comm_class | |
-/ | |
#print linear_map.coe_is_scalar_tower /- _inst_3: algebra ↝ has_scalar linear_map.compatible_smul | |
_inst_7: is_scalar_tower ↝ linear_map.compatible_smul | |
_inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
#print linear_map.coe_restrict_scalars_eq_coe /- _inst_3: algebra ↝ has_scalar linear_map.compatible_smul | |
_inst_7: is_scalar_tower ↝ linear_map.compatible_smul | |
_inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
#print restrict_scalars.module /- _inst_5: module ↝ module no_meet_fake_name | |
-/ | |
#print restrict_scalars_smul_def /- _inst_5: module ↝ has_scalar module no_meet_fake_name | |
-/ | |
#print restrict_scalars.is_scalar_tower /- _inst_5: module ↝ module module no_meet_fake_name | |
-/ | |
#print linear_map.ker_restrict_scalars /- _inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
-- algebra/algebra/operations.lean | |
#print submodule.mem_span_mul_finite_of_mem_span_mul /- _inst_3: algebra ↝ module | |
-/ | |
#print submodule.map_div /- _inst_4: comm_ring ↝ comm_semiring module | |
-/ | |
-- algebra/algebra/ordered.lean | |
#print linear_ordered_comm_ring.to_ordered_module /- _inst_1: linear_ordered_comm_ring ↝ linear_ordered_semiring | |
-/ | |
-- algebra/algebra/subalgebra.lean | |
#print subalgebra.to_submodule.is_subring /- _inst_6: comm_ring ↝ comm_semiring is_subring module no_meet_fake_name | |
-/ | |
#print subalgebra.no_zero_divisors /- _inst_6: comm_ring ↝ comm_semiring | |
-/ | |
-- algebra/algebra/tower.lean | |
#print is_scalar_tower.algebra_map_smul /- _inst_5: module ↝ has_scalar | |
_inst_6: module ↝ has_scalar mul_action | |
-/ | |
#print submodule.smul_mem_span_smul_of_mem /- _inst_4: algebra ↝ has_scalar module | |
-/ | |
#print algebra.lsmul_injective /- _inst_2: ring ↝ semiring | |
-/ | |
-- algebra/archimedean.lean | |
#print exists_int_gt /- _inst_1: linear_ordered_ring ↝ has_neg linear_ordered_semiring | |
-/ | |
#print round /- _inst_1: linear_ordered_field ↝ has_div linear_ordered_ring | |
-/ | |
-- algebra/associated.lean | |
#print prime /- _inst_1: comm_monoid_with_zero ↝ monoid_with_zero | |
-/ | |
#print associates.mk_one /- _inst_1: comm_monoid ↝ monoid | |
-/ | |
#print associates.rel_associated_iff_map_eq_map /- _inst_1: comm_monoid ↝ monoid | |
-/ | |
#print associates.mk_eq_zero /- _inst_1: comm_monoid_with_zero ↝ monoid_with_zero | |
-/ | |
#print associates.nontrivial /- _inst_1: comm_monoid_with_zero ↝ monoid_with_zero | |
-/ | |
#print associates.exists_non_zero_rep /- _inst_1: comm_monoid_with_zero ↝ monoid_with_zero | |
-/ | |
#print associates.dvd_of_mk_le_mk /- _inst_1: comm_monoid_with_zero ↝ comm_monoid | |
-/ | |
#print associates.mk_le_mk_of_dvd /- _inst_1: comm_monoid_with_zero ↝ comm_monoid | |
-/ | |
#print associates.no_zero_divisors /- _inst_1: comm_cancel_monoid_with_zero ↝ comm_monoid_with_zero no_zero_divisors | |
-/ | |
#print associates.irreducible_iff_prime_iff /- _inst_1: comm_cancel_monoid_with_zero ↝ comm_monoid_with_zero | |
-/ | |
-- algebra/big_operators/basic.lean | |
#print finset.prod_inv_distrib /- _inst_1: comm_group ↝ comm_monoid has_inv is_group_hom is_monoid_hom no_meet_fake_name | |
-/ | |
#print finset.sum_neg_distrib /- _inst_1: add_comm_group ↝ add_comm_monoid has_neg is_add_group_hom is_add_monoid_hom no_meet_fake_name | |
-/ | |
-- algebra/big_operators/finprod.lean | |
#print one_le_finprod' /- _inst_3: ordered_comm_monoid ↝ comm_monoid covariant_class preorder | |
-/ | |
#print finsum_nonneg /- _inst_3: ordered_add_comm_monoid ↝ add_comm_monoid covariant_class preorder | |
-/ | |
#print mul_finsum /- _inst_3: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print finsum_mul /- _inst_3: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
-- algebra/big_operators/finsupp.lean | |
#print finsupp.sum_apply' /- _inst_1: add_comm_monoid ↝ has_zero | |
-/ | |
#print finsupp.sum_mul /- _inst_4: non_unital_non_assoc_semiring ↝ has_zero | |
-/ | |
#print finsupp.mul_sum /- _inst_4: non_unital_non_assoc_semiring ↝ has_zero | |
-/ | |
-- algebra/big_operators/order.lean | |
#print finset.prod_le_prod'' /- _inst_2: ordered_comm_monoid ↝ comm_monoid covariant_class covariant_class preorder | |
-/ | |
#print finset.sum_le_sum /- _inst_2: ordered_add_comm_monoid ↝ add_comm_monoid covariant_class covariant_class preorder | |
-/ | |
#print finset.sum_lt_sum /- _inst_1: ordered_cancel_add_comm_monoid ↝ covariant_class ordered_add_comm_monoid | |
-/ | |
#print finset.prod_lt_prod' /- _inst_1: ordered_cancel_comm_monoid ↝ covariant_class ordered_comm_monoid | |
-/ | |
#print finset.sum_lt_sum_of_subset /- _inst_1: ordered_cancel_add_comm_monoid ↝ covariant_class ordered_add_comm_monoid | |
-/ | |
#print finset.prod_lt_prod_of_subset' /- _inst_1: ordered_cancel_comm_monoid ↝ covariant_class ordered_comm_monoid | |
-/ | |
#print finset.exists_lt_of_prod_lt' /- _inst_1: linear_ordered_cancel_comm_monoid ↝ canonically_linear_ordered_monoid | |
-/ | |
#print finset.exists_lt_of_sum_lt /- _inst_1: linear_ordered_cancel_add_comm_monoid ↝ linear_ordered_add_comm_monoid | |
-/ | |
-- algebra/big_operators/pi.lean | |
#print ring_hom.functions_ext /- _inst_4: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/big_operators/ring.lean | |
#print finset.sum_mul /- _inst_1: non_unital_non_assoc_semiring ↝ add_comm_monoid has_mul is_add_monoid_hom no_meet_fake_name | |
-/ | |
#print finset.mul_sum /- _inst_1: non_unital_non_assoc_semiring ↝ add_comm_monoid has_mul is_add_monoid_hom no_meet_fake_name | |
-/ | |
#print finset.sum_mul_sum /- _inst_1: comm_semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print finset.prod_pow_eq_pow_sum /- _inst_1: comm_semiring ↝ comm_monoid | |
-/ | |
-- algebra/category/Algebra/basic.lean | |
#print Algebra.id_apply /- _inst_1: comm_ring ↝ module no_meet_fake_name ring | |
-/ | |
#print Algebra.coe_comp /- _inst_1: comm_ring ↝ module no_meet_fake_name ring | |
-/ | |
-- algebra/category/CommRing/basic.lean | |
#print SemiRing.assoc_ring_hom /- _inst_1: semiring ↝ non_assoc_semiring | |
_inst_2: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/category/Mon/basic.lean | |
#print Mon.assoc_monoid_hom /- _inst_1: monoid ↝ mul_one_class | |
_inst_2: monoid ↝ mul_one_class | |
-/ | |
#print AddMon.assoc_add_monoid_hom /- _inst_1: add_monoid ↝ add_zero_class | |
_inst_2: add_monoid ↝ add_zero_class | |
-/ | |
-- algebra/char_p/algebra.lean | |
#print is_fraction_ring.char_p_of_is_fraction_ring /- _inst_1: integral_domain ↝ comm_ring | |
_inst_2: field ↝ comm_ring | |
-/ | |
#print is_fraction_ring.char_zero_of_is_fraction_ring /- _inst_5: char_zero ↝ char_p | |
-/ | |
-- algebra/char_p/basic.lean | |
#print ring_char.eq_zero /- _inst_2: char_zero ↝ char_p | |
-/ | |
#print ring_hom.char_p_iff_char_p /- _inst_1: field ↝ division_ring | |
_inst_2: field ↝ domain | |
-/ | |
#print char_p.cast_eq_mod /- _inst_1: ring ↝ non_assoc_semiring | |
-/ | |
#print char_p.false_of_nontrivial_of_char_one /- _inst_3: char_p ↝ subsingleton | |
-/ | |
#print char_p_of_ne_zero /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print char_p_of_prime_pow_injective /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- algebra/char_p/exp_char.lean | |
#print char_prime_of_ne_zero /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/char_p/invertible.lean | |
#print not_ring_char_dvd_of_invertible /- _inst_1: field ↝ division_ring | |
-/ | |
-- algebra/char_p/pi.lean | |
#print char_p.pi' /- _inst_1: comm_ring ↝ semiring | |
-/ | |
-- algebra/char_p/subring.lean | |
#print char_p.subsemiring /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print char_p.subring' /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- algebra/char_zero.lean | |
#print ring_hom.char_zero /- _inst_1: semiring ↝ non_assoc_semiring | |
_inst_2: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/continued_fractions/basic.lean | |
#print generalized_continued_fraction.pair.has_coe_to_generalized_continued_fraction_pair /- _inst_1: has_coe ↝ has_lift_t | |
-/ | |
#print generalized_continued_fraction.next_numerator /- _inst_1: division_ring ↝ has_add has_mul | |
-/ | |
#print generalized_continued_fraction.next_denominator /- _inst_1: division_ring ↝ has_add has_mul | |
-/ | |
-- algebra/continued_fractions/computation/basic.lean | |
#print generalized_continued_fraction.int_fract_pair.has_coe_to_int_fract_pair /- _inst_1: has_coe ↝ has_lift_t | |
-/ | |
#print generalized_continued_fraction.int_fract_pair.of /- _inst_1: linear_ordered_field ↝ linear_ordered_ring | |
-/ | |
-- algebra/continued_fractions/computation/correctness_terminating.lean | |
#print generalized_continued_fraction.comp_exact_value /- _inst_1: linear_ordered_field ↝ division_ring linear_order | |
-/ | |
-- algebra/covariant_and_contravariant.lean | |
#print covariant_flip_add_iff /- _inst_1: add_comm_semigroup ↝ has_add is_commutative | |
-/ | |
#print covariant_flip_mul_iff /- _inst_1: comm_semigroup ↝ has_mul is_commutative | |
-/ | |
#print contravariant_flip_add_iff /- _inst_1: add_comm_semigroup ↝ has_add is_commutative | |
-/ | |
#print contravariant_flip_mul_iff /- _inst_1: comm_semigroup ↝ has_mul is_commutative | |
-/ | |
-- algebra/direct_limit.lean | |
#print module.direct_limit /- _inst_2: directed_order ↝ has_le | |
-/ | |
#print module.direct_limit.totalize /- _inst_1: ring ↝ semiring | |
_inst_2: directed_order ↝ has_le | |
-/ | |
#print ring.direct_limit /- _inst_2: directed_order ↝ has_le | |
-/ | |
-- algebra/direct_sum.lean | |
#print direct_sum.add_hom_ext /- _inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print direct_sum.from_add_monoid /- _inst_2: add_comm_monoid ↝ add_zero_class | |
-/ | |
-- algebra/direct_sum_graded.lean | |
#print direct_sum.ghas_one.of_add_submonoids /- _inst_2: semiring ↝ non_assoc_semiring | |
-/ | |
#print direct_sum.ghas_one.of_submodules /- _inst_4: algebra ↝ module | |
-/ | |
#print direct_sum.ghas_mul.of_submodules /- _inst_4: algebra ↝ module | |
-/ | |
#print direct_sum.gmonoid.of_submodules /- _inst_4: algebra ↝ module | |
-/ | |
#print direct_sum.gcomm_monoid.of_submodules /- _inst_4: algebra ↝ module | |
-/ | |
#print direct_sum.ring_hom_ext' /- _inst_5: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/divisibility.lean | |
#print monoid_has_dvd /- _inst_1: monoid ↝ has_mul | |
-/ | |
#print dvd.intro /- _inst_1: monoid ↝ has_dvd has_mul | |
-/ | |
#print exists_eq_mul_right_of_dvd /- _inst_1: monoid ↝ has_dvd has_mul | |
-/ | |
#print dvd.elim /- _inst_1: monoid ↝ has_dvd has_mul | |
-/ | |
#print dvd_trans /- _inst_1: monoid ↝ has_dvd semigroup | |
-/ | |
#print dvd_not_unit /- _inst_1: comm_monoid_with_zero ↝ monoid_with_zero | |
-/ | |
-- algebra/field.lean | |
#print inverse_eq_has_inv /- _inst_1: division_ring ↝ group_with_zero | |
-/ | |
-- algebra/field_power.lean | |
#print fpow_eq_zero_iff /- _inst_1: linear_ordered_field ↝ group_with_zero | |
-/ | |
#print fpow_two_nonneg /- _inst_1: linear_ordered_field ↝ linear_ordered_ring | |
-/ | |
#print fpow_two_pos_of_ne_zero /- _inst_1: linear_ordered_field ↝ linear_ordered_ring | |
-/ | |
#print fpow_even_abs /- _inst_1: linear_ordered_field ↝ division_ring linear_order | |
-/ | |
#print rat.cast_fpow /- _inst_1: field ↝ division_ring | |
-/ | |
-- algebra/free.lean | |
#print free_semigroup.traverse /- _inst_1: applicative ↝ functor has_seq no_meet_fake_name | |
-/ | |
#print free_add_semigroup.traverse /- _inst_1: applicative ↝ functor has_seq no_meet_fake_name | |
-/ | |
-- algebra/free_monoid.lean | |
#print free_add_monoid.hom_eq /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print free_monoid.hom_eq /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
-- algebra/free_non_unital_non_assoc_algebra.lean | |
#print free_non_unital_non_assoc_algebra.smul_comm_class /- _inst_2: comm_semiring ↝ distrib_mul_action module no_meet_fake_name semiring smul_comm_class | |
-/ | |
-- algebra/gcd_monoid.lean | |
#print units_eq_one /- _inst_1: comm_cancel_monoid_with_zero ↝ monoid | |
-/ | |
#print norm_unit_eq_one /- _inst_2: unique ↝ normalization_monoid | |
-/ | |
#print normalize_eq /- _inst_2: unique ↝ normalization_monoid | |
-/ | |
-- algebra/gcd_monoid/finset.lean | |
#print finset.gcd_eq_of_dvd_sub /- _inst_1: nontrivial ↝ nonempty | |
-/ | |
-- algebra/geom_sum.lean | |
#print geom_sum /- _inst_1: semiring ↝ add_comm_monoid has_pow | |
-/ | |
#print op_geom_sum /- _inst_1: ring ↝ semiring | |
-/ | |
#print geom_sum₂ /- _inst_1: semiring ↝ add_comm_monoid has_mul has_pow | |
-/ | |
#print op_geom_sum₂ /- _inst_1: ring ↝ semiring | |
-/ | |
#print geom_sum₂_self /- _inst_1: comm_ring ↝ semiring | |
-/ | |
-- algebra/group/basic.lean | |
#print comp_mul_left /- _inst_1: semigroup ↝ has_mul is_associative | |
-/ | |
#print comp_add_left /- _inst_1: add_semigroup ↝ has_add is_associative | |
-/ | |
#print comp_mul_right /- _inst_1: semigroup ↝ has_mul is_associative | |
-/ | |
#print comp_add_right /- _inst_1: add_semigroup ↝ has_add is_associative | |
-/ | |
#print bit0_zero /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print add_sub_assoc /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
-- algebra/group/conj.lean | |
#print is_conj_one_right /- _inst_1: group ↝ right_cancel_monoid | |
-/ | |
-- algebra/group/defs.lean | |
#print group.to_monoid /- _inst_1: group ↝ monoid | |
-/ | |
#print add_group.to_add_monoid /- _inst_1: add_group ↝ add_monoid | |
-/ | |
-- algebra/group/hom.lean | |
#print monoid_with_zero_hom.to_monoid_hom_injective /- _inst_1: monoid_with_zero ↝ mul_zero_one_class | |
_inst_2: monoid_with_zero ↝ mul_zero_one_class | |
-/ | |
#print monoid_with_zero_hom.to_zero_hom_injective /- _inst_1: monoid_with_zero ↝ mul_zero_one_class | |
_inst_2: monoid_with_zero ↝ mul_zero_one_class | |
-/ | |
#print monoid_hom.mul_comp /- _inst_4: comm_monoid ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.add_comp /- _inst_4: add_comm_monoid ↝ add_zero_class | |
-/ | |
-- algebra/group/hom_instances.lean | |
#print monoid_hom.compl₂ /- _inst_4: comm_monoid ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.compl₂ /- _inst_4: add_comm_monoid ↝ add_zero_class | |
-/ | |
-- algebra/group/prod.lean | |
#print prod.fst_sub /- _inst_1: add_group ↝ has_sub | |
_inst_2: add_group ↝ has_sub | |
-/ | |
#print prod.snd_sub /- _inst_1: add_group ↝ has_sub | |
_inst_2: add_group ↝ has_sub | |
-/ | |
#print prod.mk_sub_mk /- _inst_1: add_group ↝ has_sub | |
_inst_2: add_group ↝ has_sub | |
-/ | |
-- algebra/group/semiconj.lean | |
#print add_semiconj_by.add_right /- _inst_1: add_semigroup ↝ has_add is_associative | |
-/ | |
#print semiconj_by.mul_right /- _inst_1: semigroup ↝ has_mul is_associative | |
-/ | |
-- algebra/group_power/basic.lean | |
#print pow_ite /- _inst_1: monoid ↝ has_pow | |
-/ | |
#print ite_pow /- _inst_1: monoid ↝ has_pow | |
-/ | |
#print dvd_pow /- _inst_1: comm_monoid ↝ monoid | |
-/ | |
#print eq_or_eq_neg_of_sq_eq_sq /- _inst_1: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
#print of_add_gsmul /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
#print of_mul_gpow /- _inst_1: group ↝ div_inv_monoid | |
-/ | |
-- algebra/group_power/lemmas.lean | |
#print gsmul_le_gsmul_iff /- _inst_1: linear_ordered_add_comm_group ↝ ordered_add_comm_group | |
-/ | |
#print gsmul_lt_gsmul_iff /- _inst_1: linear_ordered_add_comm_group ↝ ordered_add_comm_group | |
-/ | |
#print nsmul_le_nsmul_iff /- _inst_1: linear_ordered_add_comm_group ↝ ordered_cancel_add_comm_monoid | |
-/ | |
#print nsmul_lt_nsmul_iff /- _inst_1: linear_ordered_add_comm_group ↝ ordered_cancel_add_comm_monoid | |
-/ | |
#print nsmul_eq_mul' /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/group_power/order.lean | |
#print nsmul_pos /- _inst_1: ordered_add_comm_monoid ↝ add_monoid covariant_class preorder | |
-/ | |
#print nsmul_lt_nsmul /- _inst_1: ordered_cancel_add_comm_monoid ↝ covariant_class ordered_add_comm_monoid | |
-/ | |
#print eq_of_sq_eq_sq /- _inst_1: linear_ordered_comm_ring ↝ covariant_class integral_domain partial_order | |
-/ | |
-- algebra/group_ring_action.lean | |
#print smul_inv' /- _inst_6: field ↝ division_ring | |
-/ | |
-- algebra/group_with_zero/basic.lean | |
#print div_div_eq_mul_div /- _inst_1: comm_group_with_zero ↝ group_with_zero | |
-/ | |
#print ne_zero_of_one_div_ne_zero /- _inst_1: comm_group_with_zero ↝ group_with_zero | |
-/ | |
#print eq_zero_of_one_div_eq_zero /- _inst_1: comm_group_with_zero ↝ group_with_zero | |
-/ | |
#print div_mul_div_cancel /- _inst_1: comm_group_with_zero ↝ group_with_zero | |
-/ | |
#print div_eq_iff /- _inst_1: comm_group_with_zero ↝ group_with_zero | |
-/ | |
#print eq_div_iff /- _inst_1: comm_group_with_zero ↝ group_with_zero | |
-/ | |
-- algebra/homology/additive.lean | |
#print homological_complex.cycles_additive /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.limits.has_kernels | |
-/ | |
-- algebra/homology/exact.lean | |
#print category_theory.comp_eq_zero_of_image_eq_kernel /- _inst_2: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print category_theory.exact_comp_inv_hom_comp /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.exact category_theory.limits.has_kernels no_meet_fake_name | |
_inst_5: category_theory.exact ↝ category_theory.exact no_meet_fake_name | |
-/ | |
#print category_theory.exact_epi_comp /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.epi category_theory.epi category_theory.limits.has_kernels no_meet_fake_name | |
_inst_6: category_theory.epi ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.exact_comp_mono /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.epi category_theory.limits.has_kernels | |
-/ | |
#print category_theory.exact_kernel_subobject_arrow /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.limits.has_kernels | |
-/ | |
#print category_theory.limits.factor_thru_kernel_subobject.epi /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.epi category_theory.epi category_theory.limits.has_kernels no_meet_fake_name | |
-/ | |
#print category_theory.limits.kernel.lift.epi /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.epi category_theory.limits.has_kernels | |
-/ | |
#print category_theory.exact_zero_left_of_mono /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.epi category_theory.limits.has_kernels no_meet_fake_name | |
_inst_5: category_theory.limits.has_zero_object ↝ category_theory.epi no_meet_fake_name | |
_inst_6: category_theory.mono ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.epi_iff_exact_zero_right /- _inst_4: category_theory.preadditive ↝ category_theory.epi category_theory.exact category_theory.limits.has_kernels category_theory.limits.has_zero_morphisms no_meet_fake_name | |
-/ | |
-- algebra/homology/homological_complex.lean | |
#print homological_complex.image_eq_image /- _inst_3: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print homological_complex.image_to_eq_image /- _inst_4: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
-- algebra/homology/homology.lean | |
#print boundaries_to_cycles_naturality /- _inst_4: category_theory.limits.has_equalizers ↝ category_theory.limits.has_kernels | |
-/ | |
-- algebra/homology/image_to_kernel.lean | |
#print image_to_kernel_zero_right /- _inst_3: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print image_to_kernel_comp_right /- _inst_4: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print image_to_kernel_comp_left /- _inst_4: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print image_to_kernel_comp_mono /- _inst_4: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print image_to_kernel_epi_comp /- _inst_4: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
#print image_to_kernel_comp_hom_inv_comp /- _inst_4: category_theory.limits.has_images ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
-- algebra/homology/quasi_iso.lean | |
#print quasi_iso_comp /- _inst_8: quasi_iso ↝ category_theory.is_iso no_meet_fake_name | |
_inst_9: quasi_iso ↝ category_theory.is_iso no_meet_fake_name | |
-/ | |
-- algebra/indicator_function.lean | |
#print set.indicator_prod_one /- _inst_1: monoid_with_zero ↝ mul_zero_one_class | |
-/ | |
#print set.mul_indicator_apply_le' /- _inst_2: preorder ↝ has_le | |
-/ | |
#print set.indicator_apply_le' /- _inst_2: preorder ↝ has_le | |
-/ | |
#print monoid_hom.map_mul_indicator /- _inst_1: monoid ↝ mul_one_class | |
_inst_2: monoid ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.map_indicator /- _inst_1: add_monoid ↝ add_zero_class | |
_inst_2: add_monoid ↝ add_zero_class | |
-/ | |
-- algebra/invertible.lean | |
#print nonzero_of_invertible /- _inst_1: group_with_zero ↝ domain | |
-/ | |
-- algebra/iterate_hom.lean | |
#print monoid_hom.coe_pow /- _inst_5: comm_monoid ↝ mul_one_class | |
-/ | |
#print ring_hom.coe_pow /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.iterate_map_one /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.iterate_map_zero /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.iterate_map_add /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.iterate_map_mul /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.iterate_map_smul /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/lie/basic.lean | |
#print lie_hom.lie_apply /- _inst_7: lie_module ↝ lie_ring_module | |
_inst_11: lie_module ↝ lie_ring_module | |
-/ | |
-- algebra/lie/cartan_subalgebra.lean | |
#print lie_algebra.top_is_cartan_subalgebra_of_nilpotent /- _inst_4: lie_algebra.is_nilpotent ↝ lie_algebra.is_nilpotent | |
-/ | |
-- algebra/lie/classical.lean | |
#print lie_algebra.special_linear.E /- _inst_9: comm_ring ↝ mul_zero_one_class | |
-/ | |
#print lie_algebra.symplectic.J /- _inst_9: comm_ring ↝ has_neg mul_zero_one_class | |
-/ | |
#print lie_algebra.orthogonal.indefinite_diagonal /- _inst_9: comm_ring ↝ has_neg mul_zero_one_class | |
-/ | |
#print lie_algebra.orthogonal.Pso /- _inst_9: comm_ring ↝ mul_zero_one_class | |
-/ | |
#print lie_algebra.orthogonal.JD /- _inst_9: comm_ring ↝ mul_zero_one_class | |
-/ | |
#print lie_algebra.orthogonal.PD /- _inst_9: comm_ring ↝ has_neg mul_zero_one_class | |
-/ | |
-- algebra/lie/free.lean | |
#print free_lie_algebra.lift_aux /- _inst_3: lie_algebra ↝ is_scalar_tower module no_meet_fake_name smul_comm_class | |
-/ | |
-- algebra/lie/of_associative.lean | |
#print ring.has_bracket /- _inst_1: ring ↝ has_mul has_sub | |
-/ | |
#print ring.lie_def /- _inst_1: ring ↝ has_bracket has_mul has_sub | |
-/ | |
#print lie_ring.of_associative_ring_bracket /- _inst_1: ring ↝ has_bracket has_mul has_sub | |
-/ | |
-- algebra/lie/solvable.lean | |
#print lie_algebra.lie_ideal.solvable_iff_le_radical /- _inst_6: is_noetherian ↝ lie_algebra.is_solvable no_meet_fake_name | |
-/ | |
-- algebra/lie/weights.lean | |
#print lie_module.is_weight /- _inst_8: lie_module ↝ lie_module no_meet_fake_name | |
-/ | |
-- algebra/linear_ordered_comm_group_with_zero.lean | |
#print one_le_pow_of_one_le' /- _inst_1: linear_ordered_comm_monoid_with_zero ↝ covariant_class monoid preorder | |
-/ | |
#print pow_le_one_of_le_one /- _inst_1: linear_ordered_comm_monoid_with_zero ↝ covariant_class monoid preorder | |
-/ | |
#print le_of_le_mul_right /- _inst_1: linear_ordered_comm_group_with_zero ↝ covariant_class group_with_zero has_le | |
-/ | |
#print monoid_hom.map_neg_one /- _inst_1: linear_ordered_comm_group_with_zero ↝ linear_ordered_comm_monoid_with_zero | |
-/ | |
-- algebra/module/basic.lean | |
#print module.eq_zero_of_zero_eq_one /- _inst_3: module ↝ has_scalar mul_action no_meet_fake_name smul_with_zero | |
-/ | |
#print module.subsingleton /- _inst_4: module ↝ has_scalar mul_action no_meet_fake_name smul_with_zero | |
-/ | |
#print add_comm_monoid.nat_smul_comm_class /- _inst_3: module ↝ distrib_mul_action has_scalar | |
-/ | |
#print add_comm_group.int_smul_comm_class /- _inst_4: module ↝ distrib_mul_action has_scalar | |
-/ | |
#print add_monoid_hom.map_nat_module_smul /- _inst_1: add_comm_monoid ↝ add_monoid | |
_inst_2: add_comm_monoid ↝ add_monoid | |
-/ | |
#print add_monoid_hom.map_int_module_smul /- _inst_1: add_comm_group ↝ add_group | |
_inst_2: add_comm_group ↝ add_group | |
-/ | |
#print no_zero_smul_divisors.of_no_zero_divisors /- _inst_1: semiring ↝ has_mul has_zero | |
-/ | |
#print smul_eq_zero /- _inst_3: module ↝ distrib_mul_action has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
#print ne_neg_of_ne_zero /- _inst_6: no_zero_divisors ↝ no_zero_smul_divisors | |
-/ | |
#print no_zero_smul_divisors.of_division_ring /- _inst_2: add_comm_group ↝ add_comm_monoid distrib_mul_action has_scalar | |
_inst_3: module ↝ distrib_mul_action has_scalar | |
-/ | |
-- algebra/module/hom.lean | |
#print add_monoid_hom.coe_smul /- _inst_3: add_monoid ↝ add_zero_class distrib_mul_action | |
_inst_5: distrib_mul_action ↝ distrib_mul_action has_scalar | |
-/ | |
#print add_monoid_hom.smul_apply /- _inst_3: add_monoid ↝ add_zero_class distrib_mul_action | |
_inst_5: distrib_mul_action ↝ distrib_mul_action has_scalar | |
-/ | |
#print add_monoid_hom.smul_comm_class /- _inst_3: add_monoid ↝ add_zero_class distrib_mul_action | |
_inst_5: distrib_mul_action ↝ distrib_mul_action has_scalar | |
_inst_6: distrib_mul_action ↝ distrib_mul_action has_scalar | |
-/ | |
#print add_monoid_hom.is_scalar_tower /- _inst_3: add_monoid ↝ add_zero_class distrib_mul_action | |
_inst_5: distrib_mul_action ↝ distrib_mul_action has_scalar | |
_inst_6: distrib_mul_action ↝ distrib_mul_action has_scalar | |
-/ | |
-- algebra/module/ordered.lean | |
#print smul_le_smul_iff_of_pos /- _inst_2: ordered_add_comm_group ↝ has_scalar mul_action ordered_add_comm_monoid | |
-/ | |
#print smul_lt_iff_of_pos /- _inst_2: ordered_add_comm_group ↝ has_scalar mul_action ordered_add_comm_monoid | |
-/ | |
#print pi.ordered_module' /- _inst_1: linear_ordered_field ↝ no_meet_fake_name ordered_module ordered_semiring | |
-/ | |
#print order_dual.has_scalar /- _inst_2: ordered_add_comm_monoid ↝ add_comm_monoid has_scalar | |
_inst_3: module ↝ has_scalar | |
-/ | |
-- algebra/module/projective.lean | |
#print module.projective_lifting_property /- _inst_4: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_6: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print module.projective_of_basis /- _inst_1: ring ↝ distrib_mul_action has_scalar module no_meet_fake_name semiring smul_comm_class | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
-- algebra/module/submodule.lean | |
#print submodule.smul_of_tower_mem /- _inst_5: module ↝ has_scalar mul_action | |
-/ | |
#print submodule.smul_mem_iff' /- _inst_5: module ↝ has_scalar mul_action | |
-/ | |
#print submodule.coe_smul_of_tower /- _inst_5: module ↝ has_scalar has_scalar no_meet_fake_name | |
_inst_6: is_scalar_tower ↝ has_scalar no_meet_fake_name | |
-/ | |
#print submodule.is_scalar_tower /- _inst_5: module ↝ has_scalar has_scalar is_scalar_tower no_meet_fake_name | |
_inst_6: is_scalar_tower ↝ has_scalar is_scalar_tower no_meet_fake_name | |
-/ | |
#print submodule.smul_mem_iff /- _inst_6: module ↝ has_scalar mul_action | |
-/ | |
#print subspace /- _inst_1: field ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- algebra/monoid_algebra.lean | |
#print monoid_algebra /- _inst_1: semiring ↝ has_zero | |
-/ | |
#print monoid_algebra.lift_nc /- _inst_3: semiring ↝ non_assoc_semiring | |
-/ | |
#print monoid_algebra.has_scalar /- _inst_3: distrib_mul_action ↝ has_scalar | |
-/ | |
#print monoid_algebra.distrib_mul_action /- _inst_3: distrib_mul_action ↝ distrib_mul_action no_meet_fake_name | |
-/ | |
#print monoid_algebra.module /- _inst_3: module ↝ module no_meet_fake_name | |
-/ | |
#print monoid_algebra.is_scalar_tower /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar is_scalar_tower no_meet_fake_name | |
_inst_5: distrib_mul_action ↝ has_scalar has_scalar is_scalar_tower no_meet_fake_name | |
_inst_7: is_scalar_tower ↝ is_scalar_tower no_meet_fake_name | |
-/ | |
#print monoid_algebra.smul_comm_class /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar no_meet_fake_name smul_comm_class | |
_inst_5: distrib_mul_action ↝ has_scalar has_scalar no_meet_fake_name smul_comm_class | |
_inst_6: smul_comm_class ↝ no_meet_fake_name smul_comm_class | |
-/ | |
#print monoid_algebra.is_scalar_tower_self /- _inst_1: semiring ↝ has_scalar has_scalar monoid | |
-/ | |
#print monoid_algebra.smul_comm_class_self /- _inst_1: semiring ↝ has_scalar has_scalar monoid | |
-/ | |
#print monoid_algebra.smul_comm_class_symm_self /- _inst_1: semiring ↝ has_scalar monoid smul_comm_class | |
_inst_3: distrib_mul_action ↝ has_scalar has_scalar smul_comm_class | |
-/ | |
#print monoid_algebra.ring_hom_ext /- _inst_2: monoid ↝ mul_one_class | |
_inst_3: semiring ↝ non_assoc_semiring | |
-/ | |
#print monoid_algebra.induction_on /- _inst_2: monoid ↝ mul_one_class | |
-/ | |
#print add_monoid_algebra /- _inst_1: semiring ↝ has_zero | |
-/ | |
#print add_monoid_algebra.lift_nc /- _inst_3: semiring ↝ non_assoc_semiring | |
-/ | |
#print add_monoid_algebra.has_scalar /- _inst_3: distrib_mul_action ↝ has_scalar | |
-/ | |
#print add_monoid_algebra.distrib_mul_action /- _inst_3: distrib_mul_action ↝ distrib_mul_action no_meet_fake_name | |
-/ | |
#print add_monoid_algebra.module /- _inst_3: module ↝ module no_meet_fake_name | |
-/ | |
#print add_monoid_algebra.is_scalar_tower /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar is_scalar_tower no_meet_fake_name | |
_inst_5: distrib_mul_action ↝ has_scalar has_scalar is_scalar_tower no_meet_fake_name | |
_inst_7: is_scalar_tower ↝ is_scalar_tower no_meet_fake_name | |
-/ | |
#print add_monoid_algebra.smul_comm_class /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar no_meet_fake_name smul_comm_class | |
_inst_5: distrib_mul_action ↝ has_scalar has_scalar no_meet_fake_name smul_comm_class | |
_inst_6: smul_comm_class ↝ no_meet_fake_name smul_comm_class | |
-/ | |
#print add_monoid_algebra.induction_on /- _inst_2: add_monoid ↝ add_zero_class | |
-/ | |
-- algebra/opposites.lean | |
#print opposite.op_sub /- _inst_1: add_group ↝ has_sub | |
-/ | |
#print opposite.unop_sub /- _inst_1: add_group ↝ has_sub | |
-/ | |
-- algebra/order.lean | |
#print ge_iff_le /- _inst_1: preorder ↝ has_le | |
-/ | |
#print gt_iff_lt /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print decidable.ne_iff_lt_iff_le /- _inst_2: decidable_rel ↝ decidable_eq | |
-/ | |
-- algebra/ordered_field.lean | |
#print mul_sub_mul_div_mul_neg_iff /- _inst_1: linear_ordered_field ↝ covariant_class field has_lt | |
-/ | |
#print mul_sub_mul_div_mul_nonpos_iff /- _inst_1: linear_ordered_field ↝ covariant_class field has_le | |
-/ | |
#print mul_self_inj_of_nonneg /- _inst_1: linear_ordered_field ↝ covariant_class integral_domain partial_order | |
-/ | |
-- algebra/ordered_group.lean | |
#print sub_le_sub_iff_right /- _inst_1: add_group ↝ contravariant_class sub_neg_monoid | |
-/ | |
#print div_le_div_iff_right /- _inst_1: group ↝ contravariant_class div_inv_monoid | |
-/ | |
#print le_div_iff_mul_le' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print le_sub_iff_add_le' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print div_le_iff_le_mul' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print sub_le_iff_le_add' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print div_lt_div_iff_right /- _inst_1: group ↝ contravariant_class div_inv_monoid | |
-/ | |
#print sub_lt_sub_iff_right /- _inst_1: add_group ↝ contravariant_class sub_neg_monoid | |
-/ | |
#print lt_sub_iff_add_lt' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print lt_div_iff_mul_lt' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print sub_lt_iff_lt_add' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print div_lt_iff_lt_mul' /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print le_of_forall_pos_lt_add /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print le_of_forall_one_lt_lt_mul /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print le_of_forall_pos_le_add /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print le_of_forall_one_lt_le_mul /- _inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print linear_ordered_add_comm_group.add_lt_add_left /- _inst_1: linear_ordered_add_comm_group ↝ covariant_class has_add has_lt | |
-/ | |
#print linear_ordered_comm_group.mul_lt_mul_left' /- _inst_1: linear_ordered_comm_group ↝ covariant_class has_lt has_mul | |
-/ | |
#print min_inv_inv' /- _inst_1: linear_ordered_comm_group ↝ covariant_class covariant_class group linear_order | |
-/ | |
#print min_neg_neg /- _inst_1: linear_ordered_add_comm_group ↝ add_group covariant_class covariant_class linear_order | |
-/ | |
#print max_neg_neg /- _inst_1: linear_ordered_add_comm_group ↝ add_group covariant_class covariant_class linear_order | |
-/ | |
#print max_inv_inv' /- _inst_1: linear_ordered_comm_group ↝ covariant_class covariant_class group linear_order | |
-/ | |
#print min_sub_sub_right /- _inst_1: linear_ordered_add_comm_group ↝ add_comm_group covariant_class linear_order | |
-/ | |
#print min_div_div_right' /- _inst_1: linear_ordered_comm_group ↝ comm_group covariant_class linear_order | |
-/ | |
#print max_sub_sub_right /- _inst_1: linear_ordered_add_comm_group ↝ add_comm_group covariant_class linear_order | |
-/ | |
#print max_div_div_right' /- _inst_1: linear_ordered_comm_group ↝ comm_group covariant_class linear_order | |
-/ | |
#print eq_one_of_inv_eq' /- _inst_1: linear_ordered_comm_group ↝ covariant_class group linear_order | |
-/ | |
#print eq_zero_of_neg_eq /- _inst_1: linear_ordered_add_comm_group ↝ add_group covariant_class linear_order | |
-/ | |
#print exists_zero_lt /- _inst_1: linear_ordered_add_comm_group ↝ add_group covariant_class linear_order | |
-/ | |
#print exists_one_lt' /- _inst_1: linear_ordered_comm_group ↝ covariant_class group linear_order | |
-/ | |
#print abs_lt /- _inst_3: covariant_class ↝ covariant_class | |
_inst_4: covariant_class ↝ covariant_class | |
-/ | |
#print abs_le /- _inst_1: add_comm_group ↝ add_group covariant_class | |
-/ | |
#print abs_eq /- _inst_1: add_comm_group ↝ add_group | |
-/ | |
#print abs_le_max_abs_abs /- _inst_1: add_comm_group ↝ add_group covariant_class | |
-/ | |
#print eq_of_abs_sub_eq_zero /- _inst_1: add_comm_group ↝ add_group | |
-/ | |
#print inv_le_inv' /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group has_le | |
-/ | |
#print neg_le_neg /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class has_le | |
-/ | |
#print inv_lt_inv' /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group has_lt | |
-/ | |
#print neg_lt_neg /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class has_lt | |
-/ | |
#print neg_neg_of_pos /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class has_lt | |
-/ | |
#print inv_lt_one_of_one_lt /- _inst_1: ordered_comm_group ↝ covariant_class group has_lt | |
-/ | |
#print neg_nonpos_of_nonneg /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class has_le | |
-/ | |
#print inv_le_one_of_one_le /- _inst_1: ordered_comm_group ↝ covariant_class group has_le | |
-/ | |
#print neg_nonneg_of_nonpos /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class has_le | |
-/ | |
#print one_le_inv_of_le_one /- _inst_1: ordered_comm_group ↝ covariant_class group has_le | |
-/ | |
-- algebra/ordered_monoid.lean | |
#print ordered_add_comm_monoid.to_covariant_class_right /- _inst_1: ordered_add_comm_monoid ↝ covariant_class has_add has_le | |
-/ | |
#print ordered_comm_monoid.to_covariant_class_right /- _inst_1: ordered_comm_monoid ↝ covariant_class has_le has_mul | |
-/ | |
#print ordered_comm_monoid.to_contravariant_class_right /- _inst_1: ordered_comm_monoid ↝ contravariant_class has_lt has_mul | |
-/ | |
#print ordered_add_comm_monoid.to_contravariant_class_right /- _inst_1: ordered_add_comm_monoid ↝ contravariant_class has_add has_lt | |
-/ | |
#print bit0_pos /- _inst_1: ordered_add_comm_monoid ↝ add_zero_class covariant_class preorder | |
-/ | |
#print with_zero.coe_le_coe /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print with_top.zero_lt_top /- _inst_1: ordered_add_comm_monoid ↝ has_zero partial_order | |
-/ | |
#print with_top.zero_lt_coe /- _inst_1: ordered_add_comm_monoid ↝ has_zero partial_order | |
-/ | |
#print with_bot.coe_eq_zero /- _inst_1: add_monoid ↝ has_zero | |
-/ | |
#print with_bot.bot_add /- _inst_1: ordered_add_comm_monoid ↝ add_monoid | |
-/ | |
#print with_bot.add_bot /- _inst_1: ordered_add_comm_monoid ↝ add_monoid | |
-/ | |
#print with_top.add_lt_add_iff_left /- _inst_1: ordered_cancel_add_comm_monoid ↝ contravariant_class covariant_class has_add partial_order | |
-/ | |
#print with_bot.add_lt_add_iff_left /- _inst_1: ordered_cancel_add_comm_monoid ↝ covariant_class ordered_add_comm_monoid | |
-/ | |
#print min_add_add_left /- _inst_1: add_cancel_comm_monoid ↝ has_add | |
-/ | |
#print min_mul_mul_left /- _inst_1: cancel_comm_monoid ↝ has_mul | |
-/ | |
#print min_mul_mul_right /- _inst_1: cancel_comm_monoid ↝ covariant_class has_mul | |
_inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print min_add_add_right /- _inst_1: add_cancel_comm_monoid ↝ covariant_class has_add | |
_inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print max_mul_mul_left /- _inst_1: cancel_comm_monoid ↝ has_mul | |
-/ | |
#print max_add_add_left /- _inst_1: add_cancel_comm_monoid ↝ has_add | |
-/ | |
#print max_add_add_right /- _inst_1: add_cancel_comm_monoid ↝ covariant_class has_add | |
_inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print max_mul_mul_right /- _inst_1: cancel_comm_monoid ↝ covariant_class has_mul | |
_inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print min_le_mul_of_one_le_right /- _inst_1: cancel_comm_monoid ↝ mul_one_class | |
-/ | |
#print min_le_add_of_nonneg_right /- _inst_1: add_cancel_comm_monoid ↝ add_zero_class | |
-/ | |
#print min_le_mul_of_one_le_left /- _inst_1: cancel_comm_monoid ↝ covariant_class mul_one_class | |
_inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print min_le_add_of_nonneg_left /- _inst_1: add_cancel_comm_monoid ↝ add_zero_class covariant_class | |
_inst_3: covariant_class ↝ covariant_class | |
-/ | |
#print max_le_add_of_nonneg /- _inst_1: add_cancel_comm_monoid ↝ add_zero_class covariant_class | |
-/ | |
#print max_le_mul_of_one_le /- _inst_1: cancel_comm_monoid ↝ covariant_class mul_one_class | |
-/ | |
-- algebra/ordered_monoid_lemmas.lean | |
#print le_add_of_nonneg_left /- _inst_1: preorder ↝ has_le | |
-/ | |
#print le_mul_of_one_le_left' /- _inst_1: preorder ↝ has_le | |
-/ | |
#print mul_le_of_le_one_left' /- _inst_1: preorder ↝ has_le | |
-/ | |
#print add_le_of_nonpos_left /- _inst_1: preorder ↝ has_le | |
-/ | |
#print lt_mul_of_one_lt_left' /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print lt_add_of_pos_left /- _inst_1: preorder ↝ has_lt | |
-/ | |
-- algebra/ordered_ring.lean | |
#print add_one_le_two_mul /- _inst_1: preorder ↝ has_le | |
-/ | |
#print strict_mono.mul_const /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print strict_mono.const_mul /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print strict_mono.mul /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print abs_mul_abs_self /- _inst_1: linear_ordered_ring ↝ linear_order ring | |
-/ | |
#print le_of_mul_le_of_one_le /- _inst_1: linear_ordered_ring ↝ linear_ordered_semiring | |
-/ | |
#print nonneg_le_nonneg_of_sq_le_sq /- _inst_1: linear_ordered_ring ↝ linear_ordered_semiring | |
-/ | |
#print mul_self_lt_mul_self_iff /- _inst_1: linear_ordered_ring ↝ linear_ordered_semiring | |
-/ | |
#print mul_self_inj /- _inst_1: linear_ordered_ring ↝ linear_ordered_semiring | |
-/ | |
#print abs_dvd /- _inst_1: linear_ordered_comm_ring ↝ comm_ring linear_order | |
-/ | |
#print dvd_abs /- _inst_1: linear_ordered_comm_ring ↝ comm_ring linear_order | |
-/ | |
-- algebra/periodic.lean | |
#print function.periodic.const_smul' /- _inst_3: module ↝ distrib_mul_action has_scalar mul_action no_meet_fake_name smul_with_zero | |
-/ | |
#print function.antiperiodic.sub_eq' /- _inst_2: add_group ↝ has_neg | |
-/ | |
#print function.antiperiodic.const_smul' /- _inst_4: module ↝ distrib_mul_action has_scalar mul_action | |
-/ | |
#print function.antiperiodic.add /- _inst_1: add_group ↝ add_semigroup nonempty | |
-/ | |
#print function.periodic.add_antiperiod /- _inst_1: add_group ↝ add_semigroup nonempty | |
-/ | |
-- algebra/pointwise.lean | |
#print set.univ_mul_univ /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print set.univ_add_univ /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print set.bdd_above_mul /- _inst_1: ordered_comm_monoid ↝ covariant_class covariant_class has_mul preorder | |
-/ | |
#print set.bdd_above_add /- _inst_1: ordered_add_comm_monoid ↝ covariant_class covariant_class has_add preorder | |
-/ | |
#print set.univ_inv /- _inst_1: group ↝ has_inv | |
-/ | |
#print set.univ_neg /- _inst_1: add_group ↝ has_neg | |
-/ | |
#print zero_smul_set /- _inst_3: module ↝ has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
#print mem_inv_smul_set_iff /- _inst_1: field ↝ group_with_zero | |
-/ | |
#print finset.subset_add /- _inst_2: add_monoid ↝ has_add | |
-/ | |
#print finset.subset_mul /- _inst_2: monoid ↝ has_mul | |
-/ | |
#print add_submonoid.add_subset /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print submonoid.mul_subset /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print submonoid.coe_mul_self_eq /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print add_submonoid.coe_add_self_eq /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print submonoid.closure_mul_le /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print add_submonoid.closure_add_le /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
-- algebra/polynomial/group_ring_action.lean | |
#print prod_X_sub_smul /- _inst_5: mul_semiring_action ↝ mul_action | |
-/ | |
-- algebra/quadratic_discriminant.lean | |
#print discrim /- _inst_1: ring ↝ has_add has_mul has_one has_pow has_sub | |
-/ | |
-- algebra/quandle.lean | |
#print rack.self_distrib /- _inst_1: rack ↝ shelf | |
-/ | |
#print rack.is_involutory /- _inst_2: rack ↝ shelf | |
-/ | |
#print rack.is_abelian /- _inst_2: rack ↝ shelf | |
-/ | |
-- algebra/quaternion.lean | |
#print quaternion_algebra.has_coe_t /- _inst_1: comm_ring ↝ has_zero | |
-/ | |
#print quaternion_algebra.coe_re /- _inst_1: comm_ring ↝ has_coe_t no_meet_fake_name | |
-/ | |
#print quaternion_algebra.coe_im_i /- _inst_1: comm_ring ↝ has_coe_t has_zero no_meet_fake_name | |
-/ | |
#print quaternion_algebra.coe_im_j /- _inst_1: comm_ring ↝ has_coe_t has_zero no_meet_fake_name | |
-/ | |
#print quaternion_algebra.coe_im_k /- _inst_1: comm_ring ↝ has_coe_t has_zero no_meet_fake_name | |
-/ | |
#print quaternion_algebra.coe_injective /- _inst_1: comm_ring ↝ has_coe_t no_meet_fake_name | |
-/ | |
#print quaternion_algebra.has_zero /- _inst_1: comm_ring ↝ has_zero | |
-/ | |
#print quaternion_algebra.has_one /- _inst_1: comm_ring ↝ mul_zero_one_class | |
-/ | |
#print quaternion_algebra.has_add /- _inst_1: comm_ring ↝ has_add | |
-/ | |
#print quaternion_algebra.has_neg /- _inst_1: comm_ring ↝ has_neg | |
-/ | |
#print quaternion_algebra.has_sub /- _inst_1: comm_ring ↝ has_sub | |
-/ | |
#print quaternion_algebra.has_mul /- _inst_1: comm_ring ↝ has_add has_mul has_sub | |
-/ | |
#print quaternion.has_coe_t /- _inst_1: comm_ring ↝ has_coe_t has_neg has_one no_meet_fake_name | |
-/ | |
#print quaternion.ext /- _inst_1: comm_ring ↝ has_neg has_one | |
-/ | |
#print quaternion.ext_iff /- _inst_1: comm_ring ↝ has_neg has_one | |
-/ | |
#print quaternion.coe_re /- _inst_1: comm_ring ↝ has_coe_t has_neg has_one | |
-/ | |
#print quaternion.coe_im_i /- _inst_1: comm_ring ↝ has_coe_t has_neg mul_zero_one_class | |
-/ | |
#print quaternion.coe_im_j /- _inst_1: comm_ring ↝ has_coe_t has_neg mul_zero_one_class | |
-/ | |
#print quaternion.coe_im_k /- _inst_1: comm_ring ↝ has_coe_t has_neg mul_zero_one_class | |
-/ | |
#print quaternion.has_inv /- _inst_1: linear_ordered_field ↝ comm_ring has_inv | |
-/ | |
-- algebra/regular.lean | |
#print is_regular_one /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
-- algebra/ring/basic.lean | |
#print one_add_one_eq_two /- _inst_1: semiring ↝ has_add has_one | |
-/ | |
#print two_mul /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print distrib_three_right /- _inst_1: semiring ↝ distrib | |
-/ | |
#print mul_two /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print mul_boole /- _inst_2: non_assoc_semiring ↝ mul_zero_one_class | |
-/ | |
#print boole_mul /- _inst_2: non_assoc_semiring ↝ mul_zero_one_class | |
-/ | |
#print even /- _inst_1: semiring ↝ has_add has_mul has_one | |
-/ | |
#print odd /- _inst_1: semiring ↝ has_add has_mul has_one | |
-/ | |
#print two_dvd_bit0 /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print ring_hom.map_dvd /- _inst_1: comm_semiring ↝ has_dvd non_assoc_semiring | |
_inst_2: comm_semiring ↝ has_dvd non_assoc_semiring | |
-/ | |
#print dvd_neg_of_dvd /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print mul_self_eq_mul_self_iff /- _inst_1: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
#print commute.bit1_right /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print commute.bit1_left /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/ring/boolean_ring.lean | |
#print boolean_ring.has_sup /- _inst_1: boolean_ring ↝ has_add has_mul | |
-/ | |
#print boolean_ring.has_inf /- _inst_1: boolean_ring ↝ has_mul | |
-/ | |
#print boolean_ring.has_sdiff /- _inst_1: boolean_ring ↝ has_add has_mul has_one | |
-/ | |
#print boolean_ring.has_bot /- _inst_1: boolean_ring ↝ has_zero | |
-/ | |
-- algebra/ring/prod.lean | |
#print ring_hom.prod_comp_prod_map /- _inst_1: non_assoc_semiring ↝ mul_one_class | |
_inst_2: non_assoc_semiring ↝ mul_one_class | |
_inst_3: non_assoc_semiring ↝ mul_one_class | |
_inst_4: non_assoc_semiring ↝ mul_one_class | |
_inst_5: non_assoc_semiring ↝ mul_one_class | |
-/ | |
-- algebra/ring_quot.lean | |
#print ring_quot.ring_quot_ext /- _inst_5: semiring ↝ non_assoc_semiring | |
-/ | |
-- algebra/smul_regular.lean | |
#print is_smul_regular.is_left_regular_iff /- _inst_1: monoid ↝ has_mul | |
-/ | |
#print is_smul_regular.mul /- _inst_2: mul_action ↝ has_scalar is_scalar_tower | |
-/ | |
#print is_smul_regular.of_mul /- _inst_2: mul_action ↝ has_scalar is_scalar_tower | |
-/ | |
#print is_smul_regular.of_smul_eq_one /- _inst_4: mul_action_with_zero ↝ has_scalar | |
_inst_5: mul_action_with_zero ↝ has_scalar | |
_inst_6: mul_action_with_zero ↝ has_scalar mul_action | |
-/ | |
#print is_smul_regular.of_mul_eq_one /- _inst_4: mul_action_with_zero ↝ has_scalar mul_action | |
-/ | |
-- algebra/squarefree.lean | |
#print squarefree_of_dvd_of_squarefree /- _inst_1: comm_monoid ↝ monoid | |
-/ | |
-- algebra/support.lean | |
#print function.mul_support_mul /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print function.support_add /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print function.support_smul_subset_left /- _inst_3: module ↝ has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
-- algebra/triv_sq_zero_ext.lean | |
#print triv_sq_zero_ext.inl_add /- _inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print triv_sq_zero_ext.inr_add /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print triv_sq_zero_ext.inl_fst_add_inr_snd_eq /- _inst_1: add_monoid ↝ add_zero_class | |
_inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print triv_sq_zero_ext.fst_smul /- _inst_2: has_scalar ↝ has_scalar no_meet_fake_name | |
-/ | |
#print triv_sq_zero_ext.snd_smul /- _inst_1: has_mul ↝ has_scalar no_meet_fake_name | |
-/ | |
#print triv_sq_zero_ext.inl_mul_inr /- _inst_3: module ↝ distrib_mul_action has_scalar | |
-/ | |
#print triv_sq_zero_ext.inr_mul_inl /- _inst_3: module ↝ distrib_mul_action has_scalar | |
-/ | |
#print triv_sq_zero_ext.inr_mul_inr /- _inst_3: module ↝ has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
-- algebraic_geometry/prime_spectrum.lean | |
#print prime_spectrum /- _inst_1: comm_ring ↝ semiring | |
-/ | |
-- algebraic_topology/simplicial_object.lean | |
#print category_theory.simplicial_object.category_theory.limits.has_limits /- _inst_2: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.simplicial_object.category_theory.limits.has_colimits /- _inst_2: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.simplicial_object.truncated.category_theory.limits.has_limits /- _inst_2: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.simplicial_object.truncated.category_theory.limits.has_colimits /- _inst_2: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.cosimplicial_object.category_theory.limits.has_limits /- _inst_2: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.cosimplicial_object.category_theory.limits.has_colimits /- _inst_2: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.cosimplicial_object.truncated.category_theory.limits.has_limits /- _inst_2: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.cosimplicial_object.truncated.category_theory.limits.has_colimits /- _inst_2: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- analysis/asymptotics/asymptotic_equivalent.lean | |
#print asymptotics.is_equivalent /- _inst_1: normed_group ↝ has_norm has_sub | |
-/ | |
-- analysis/asymptotics/asymptotics.lean | |
#print asymptotics.is_O_with.weaken /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_o_of_subsingleton /- _inst_4: normed_group ↝ semi_normed_group | |
_inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_norm_right /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_norm_left /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_neg_right /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_neg_left /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with.prod_left_same /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_O_with.prod_left_fst /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_O_with.prod_left_snd /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_O.prod_left_fst /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_O.prod_left_snd /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_o.prod_left_fst /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_o.prod_left_snd /- _inst_6: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_O_with.eq_zero_imp /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with.add /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_o.add_add /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_o_zero /- _inst_4: normed_group ↝ semi_normed_group | |
_inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_zero /- _inst_4: normed_group ↝ semi_normed_group | |
_inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_zero' /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_refl_left /- _inst_5: normed_group ↝ has_norm | |
-/ | |
#print asymptotics.is_O_with_zero_right_iff /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_o_const_iff /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_const_of_tendsto /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_const_mul_self /- _inst_7: normed_ring ↝ semi_normed_ring | |
-/ | |
#print asymptotics.is_O_with.mul /- _inst_7: normed_ring ↝ semi_normed_ring | |
-/ | |
#print asymptotics.is_O_with.const_smul_left /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_O_const_smul_left_iff /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_o_const_smul_left /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_o_const_smul_left_iff /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_O_const_smul_right /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_o_const_smul_right /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_O_with.smul /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
_inst_12: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_O.smul /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
_inst_12: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_O.smul_is_o /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
_inst_12: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_o.smul_is_O /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
_inst_12: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_o.smul /- _inst_11: normed_space ↝ has_scalar semi_normed_space | |
_inst_12: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print asymptotics.is_o_norm_pow_norm_pow /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with.right_le_sub_of_lt_1 /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_cofinite_iff /- _inst_4: normed_group ↝ semi_normed_group | |
-/ | |
#print asymptotics.is_O_with_pi /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print summable_of_is_O /- _inst_1: normed_group ↝ semi_normed_group | |
-/ | |
-- analysis/asymptotics/specific_asymptotics.lean | |
#print pow_div_pow_eventually_eq_at_top /- _inst_1: linear_ordered_field ↝ group_with_zero no_top_order preorder | |
-/ | |
#print pow_div_pow_eventually_eq_at_bot /- _inst_1: linear_ordered_field ↝ group_with_zero preorder | |
-/ | |
#print asymptotics.is_O.trans_tendsto_norm_at_top /- _inst_1: normed_linear_ordered_field ↝ normed_group | |
-/ | |
-- analysis/calculus/fderiv.lean | |
#print has_fderiv_at_filter /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
_inst_3: normed_space ↝ module | |
_inst_5: normed_space ↝ module | |
-/ | |
#print has_strict_fderiv_at /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
_inst_3: normed_space ↝ module | |
_inst_5: normed_space ↝ module | |
-/ | |
#print has_strict_fderiv_at.restrict_scalars /- _inst_3: normed_algebra ↝ has_scalar linear_map.compatible_smul | |
_inst_7: is_scalar_tower ↝ linear_map.compatible_smul | |
_inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
#print has_fderiv_at.restrict_scalars /- _inst_3: normed_algebra ↝ has_scalar linear_map.compatible_smul | |
_inst_7: is_scalar_tower ↝ linear_map.compatible_smul | |
_inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
#print has_fderiv_within_at.restrict_scalars /- _inst_3: normed_algebra ↝ has_scalar linear_map.compatible_smul | |
_inst_7: is_scalar_tower ↝ linear_map.compatible_smul | |
_inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
-- analysis/calculus/fderiv_measurable.lean | |
#print fderiv_measurable_aux.A /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
_inst_3: normed_space ↝ module | |
_inst_5: normed_space ↝ module | |
-/ | |
-- analysis/calculus/formal_multilinear_series.lean | |
#print formal_multilinear_series /- _inst_8: nondiscrete_normed_field ↝ module normed_field | |
_inst_12: normed_space ↝ module | |
-/ | |
-- analysis/calculus/inverse.lean | |
#print approximates_linear_on /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
_inst_3: normed_space ↝ module | |
_inst_5: normed_space ↝ module | |
-/ | |
-- analysis/calculus/mean_value.lean | |
#print image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
-- analysis/calculus/tangent_cone.lean | |
#print tangent_cone_at /- _inst_1: nondiscrete_normed_field ↝ has_norm semiring | |
_inst_3: module ↝ has_scalar | |
-/ | |
#print tangent_cone_univ /- _inst_3: normed_space ↝ has_scalar module mul_action | |
-/ | |
#print tangent_cone_mono /- _inst_3: normed_space ↝ has_scalar module | |
-/ | |
#print tangent_cone_at.lim_zero /- _inst_1: nondiscrete_normed_field ↝ normed_field semi_normed_space | |
_inst_3: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print unique_diff_on.unique_diff_within_at /- _inst_3: normed_space ↝ module | |
-/ | |
#print unique_diff_on_empty /- _inst_3: normed_space ↝ module | |
-/ | |
-- analysis/convex/basic.lean | |
#print segment /- _inst_1: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print open_segment /- _inst_1: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print convex /- _inst_1: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print convex.combo_self /- _inst_5: linear_ordered_field ↝ non_assoc_semiring | |
-/ | |
#print convex_on /- _inst_6: ordered_add_comm_monoid ↝ add_comm_monoid has_le | |
-/ | |
#print concave_on /- _inst_6: ordered_add_comm_monoid ↝ add_comm_monoid has_le | |
-/ | |
#print convex_on.le_on_segment' /- _inst_8: linear_ordered_add_comm_group ↝ covariant_class linear_ordered_add_comm_monoid | |
-/ | |
#print convex_on.le_left_of_right_le' /- _inst_8: linear_ordered_add_comm_group ↝ covariant_class covariant_class linear_ordered_add_comm_monoid | |
-/ | |
#print convex_on.convex_lt /- _inst_8: ordered_cancel_add_comm_monoid ↝ contravariant_class covariant_class ordered_add_comm_monoid | |
-/ | |
#print finset.center_mass /- _inst_1: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- analysis/convex/extrema.lean | |
#print is_min_on.of_is_local_min_on_of_convex_on_Icc /- _inst_6: linear_ordered_add_comm_group ↝ covariant_class linear_ordered_add_comm_monoid | |
-/ | |
-- analysis/convex/topology.lean | |
#print convex.closure /- _inst_4: topological_add_group ↝ has_continuous_add | |
-/ | |
#print convex.add_smul_sub_mem_interior /- _inst_4: topological_add_group ↝ has_continuous_add | |
-/ | |
-- analysis/hofer.lean | |
#print hofer /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
-- analysis/normed_space/add_torsor.lean | |
#print isometric.point_reflection_fixed_iff /- _inst_8: semi_normed_space ↝ module | |
-/ | |
#print affine_map.continuous_linear_iff /- _inst_11: semi_normed_space ↝ module | |
_inst_12: semi_normed_space ↝ module | |
-/ | |
-- analysis/normed_space/banach.lean | |
#print exists_approx_preimage_norm_le /- _inst_3: normed_space ↝ has_scalar module semi_normed_space | |
-/ | |
-- analysis/normed_space/basic.lean | |
#print coe_nnnorm /- _inst_1: semi_normed_group ↝ has_nnnorm has_norm | |
-/ | |
#print eventually_ne_of_tendsto_norm_at_top /- _inst_1: semi_normed_group ↝ has_norm | |
-/ | |
#print normed_top_monoid /- _inst_1: semi_normed_group ↝ has_add has_continuous_add topological_space | |
-/ | |
#print normed_top_group /- _inst_1: semi_normed_group ↝ add_group topological_add_group topological_space | |
-/ | |
#print nnnorm_one /- _inst_1: semi_normed_group ↝ has_nnnorm has_norm | |
-/ | |
#print finset.norm_prod_le' /- _inst_2: normed_comm_ring ↝ semi_normed_comm_ring | |
-/ | |
#print finset.norm_prod_le /- _inst_2: normed_comm_ring ↝ semi_normed_comm_ring | |
-/ | |
#print normed_field.nhds_within_is_unit_ne_bot /- _inst_1: nondiscrete_normed_field ↝ filter.ne_bot group_with_zero no_meet_fake_name topological_space | |
-/ | |
#print eventually_nhds_norm_smul_sub_lt /- _inst_4: semi_normed_space ↝ distrib_mul_action has_continuous_smul has_scalar | |
-/ | |
#print ne_neg_of_mem_sphere /- _inst_4: semi_normed_space ↝ module no_zero_smul_divisors | |
-/ | |
#print rescale_to_shell /- _inst_3: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
-- analysis/normed_space/bounded_linear_maps.lean | |
#print is_linear_map.with_bound /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
-/ | |
#print is_bounded_linear_map.tendsto /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
-/ | |
#print is_bounded_linear_map.is_O_id /- _inst_1: nondiscrete_normed_field ↝ normed_field | |
-/ | |
#print is_bounded_bilinear_map_smul /- _inst_9: normed_algebra ↝ algebra has_scalar no_meet_fake_name normed_space | |
_inst_12: normed_space ↝ distrib_mul_action has_scalar module semi_normed_space | |
-/ | |
#print linear_map.norm_apply_of_isometry /- _inst_1: nondiscrete_normed_field ↝ module normed_field | |
_inst_3: normed_space ↝ module | |
_inst_5: normed_space ↝ module | |
-/ | |
-- analysis/normed_space/complemented.lean | |
#print continuous_linear_map.ker_closed_complemented_of_finite_dimensional_range /- _inst_5: normed_space ↝ module module no_meet_fake_name normed_space | |
-/ | |
-- analysis/normed_space/dual.lean | |
#print normed_space.dual /- _inst_1: nondiscrete_normed_field ↝ module module normed_field | |
_inst_3: semi_normed_space ↝ module | |
-/ | |
-- analysis/normed_space/finite_dimension.lean | |
#print linear_map.continuous_on_pi /- _inst_2: normed_field ↝ module semiring topological_space | |
_inst_6: topological_add_group ↝ has_continuous_add | |
-/ | |
#print affine_map.continuous_of_finite_dimensional /- _inst_5: normed_space ↝ has_continuous_smul module module semi_normed_space | |
_inst_13: normed_add_torsor ↝ add_torsor add_torsor semi_normed_add_torsor | |
_inst_15: normed_add_torsor ↝ add_torsor add_torsor semi_normed_add_torsor | |
-/ | |
#print linear_map.exists_antilipschitz_with /- _inst_5: normed_space ↝ module module no_meet_fake_name normed_space | |
-/ | |
#print is_open_set_of_nat_le_rank /- _inst_3: normed_space ↝ module module module semi_normed_space semi_normed_space | |
-/ | |
#print basis.op_norm_le /- _inst_5: normed_space ↝ has_scalar module semi_normed_space | |
-/ | |
#print continuous_linear_map.topological_space.second_countable_topology /- _inst_14: topological_space.second_countable_topology ↝ topological_space.separable_space | |
-/ | |
#print submodule.complete_of_finite_dimensional /- _inst_3: normed_space ↝ module module no_meet_fake_name normed_space | |
-/ | |
#print continuous_linear_map.exists_right_inverse_of_surjective /- _inst_3: normed_space ↝ has_continuous_smul module module module | |
-/ | |
-- analysis/normed_space/hahn_banach.lean | |
#print norm' /- _inst_1: nondiscrete_normed_field ↝ semi_normed_ring | |
_inst_3: semi_normed_group ↝ has_norm | |
-/ | |
-- analysis/normed_space/indicator_function.lean | |
#print norm_indicator_eq_indicator_norm /- _inst_1: normed_group ↝ semi_normed_group | |
-/ | |
#print nnnorm_indicator_eq_indicator_nnnorm /- _inst_1: normed_group ↝ semi_normed_group | |
-/ | |
#print indicator_norm_le_norm_self /- _inst_1: normed_group ↝ semi_normed_group | |
-/ | |
-- analysis/normed_space/inner_product.lean | |
#print orthonormal /- _inst_2: inner_product_space ↝ has_inner has_norm | |
-/ | |
#print submodule.coe_inner /- _inst_2: inner_product_space ↝ add_comm_monoid has_inner inner_product_space module no_meet_fake_name | |
-/ | |
#print has_inner.is_R_or_C_to_real /- _inst_2: inner_product_space ↝ has_inner | |
-/ | |
#print submodule.finrank_add_finrank_orthogonal /- _inst_4: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print maximal_orthonormal_iff_basis_of_finite_dimensional /- _inst_4: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
-- analysis/normed_space/mazur_ulam.lean | |
#print isometric.midpoint_fixed /- _inst_4: normed_add_torsor ↝ add_torsor semi_normed_add_torsor | |
-/ | |
#print isometric.map_midpoint /- _inst_8: normed_add_torsor ↝ add_torsor semi_normed_add_torsor | |
-/ | |
-- analysis/normed_space/multilinear.lean | |
#print multilinear_map.bound_of_shell /- _inst_5: nondiscrete_normed_field ↝ module normed_field semi_normed_space | |
_inst_15: normed_space ↝ has_scalar module semi_normed_space | |
-/ | |
#print multilinear_map.norm_image_sub_le_of_bound' /- _inst_5: nondiscrete_normed_field ↝ module normed_field | |
_inst_15: normed_space ↝ module | |
-/ | |
#print multilinear_map.restr_norm_le /- _inst_5: nondiscrete_normed_field ↝ module normed_field | |
_inst_15: normed_space ↝ module | |
_inst_17: normed_space ↝ module | |
-/ | |
#print continuous_multilinear_map.op_norm /- _inst_5: nondiscrete_normed_field ↝ module normed_field | |
_inst_15: normed_space ↝ module | |
-/ | |
#print continuous_multilinear_map.bounds_bdd_below /- _inst_5: nondiscrete_normed_field ↝ module normed_field | |
_inst_15: normed_space ↝ module | |
-/ | |
#print continuous_multilinear_map.op_norm_smul_le /- _inst_18: nondiscrete_normed_field ↝ algebra has_continuous_smul module normed_field semi_normed_space | |
_inst_19: normed_algebra ↝ algebra has_scalar | |
_inst_20: normed_space ↝ has_continuous_smul has_scalar module semi_normed_space | |
-/ | |
#print continuous_multilinear_map.norm_restrict_scalars /- _inst_19: normed_algebra ↝ has_scalar | |
-/ | |
#print continuous_multilinear_map.uncurry0 /- _inst_5: nondiscrete_normed_field ↝ module normed_field | |
_inst_17: normed_space ↝ module | |
-/ | |
#print continuous_multilinear_map.curry0 /- _inst_15: normed_space ↝ module | |
-/ | |
-- analysis/normed_space/normed_group_hom.lean | |
#print exists_pos_bound_of_bound /- _inst_2: semi_normed_group ↝ has_norm | |
-/ | |
#print normed_group_hom.op_norm_zero_iff /- _inst_5: normed_group ↝ semi_normed_group | |
-/ | |
#print normed_group_hom.is_closed_ker /- _inst_6: normed_group ↝ semi_normed_group t1_space | |
-/ | |
-- analysis/normed_space/normed_group_quotient.lean | |
#print image_norm_nonempty /- _inst_1: semi_normed_group ↝ add_group add_subgroup.normal has_norm no_meet_fake_name | |
-/ | |
-- analysis/normed_space/operator_norm.lean | |
#print linear_map.lipschitz_of_bound /- _inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print linear_map.antilipschitz_of_bound /- _inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print linear_map.bound_of_antilipschitz /- _inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print linear_map.bound_of_shell_semi_normed /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
-/ | |
#print norm_image_of_norm_zero /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
_inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print continuous_linear_map.to_span_singleton_homothety /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
-/ | |
#print continuous_linear_map.op_norm /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
_inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print continuous_linear_map.bounds_bdd_below /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
_inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print continuous_linear_map.op_norm_smul_le /- _inst_10: smul_comm_class ↝ has_scalar | |
-/ | |
#print continuous_linear_map.isometry_iff_norm /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
_inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print continuous_linear_map.norm_restrict_scalars /- _inst_9: normed_algebra ↝ has_scalar linear_map.compatible_smul | |
_inst_11: is_scalar_tower ↝ linear_map.compatible_smul | |
_inst_13: is_scalar_tower ↝ linear_map.compatible_smul | |
-/ | |
#print continuous_linear_equiv.homothety_inverse /- _inst_4: nondiscrete_normed_field ↝ module normed_field | |
_inst_5: semi_normed_space ↝ module | |
_inst_6: semi_normed_space ↝ module | |
-/ | |
#print continuous_linear_map.bilinear_comp /- _inst_5: semi_normed_space ↝ module | |
-/ | |
#print linear_map.bound_of_shell /- _inst_5: normed_space ↝ module semi_normed_space | |
_inst_6: normed_space ↝ module semi_normed_space | |
-/ | |
#print continuous_linear_map.op_norm_zero_iff /- _inst_5: normed_space ↝ module module semi_normed_space | |
_inst_6: normed_space ↝ module module semi_normed_space | |
-/ | |
#print continuous_linear_map.norm_id /- _inst_5: normed_space ↝ module semi_normed_space | |
-/ | |
#print continuous_linear_map.homothety_norm /- _inst_5: normed_space ↝ module module semi_normed_space | |
_inst_6: normed_space ↝ module module semi_normed_space | |
-/ | |
#print continuous_linear_map.uniform_embedding_of_bound /- _inst_5: normed_space ↝ module module semi_normed_space | |
_inst_6: normed_space ↝ module module semi_normed_space | |
-/ | |
#print continuous_linear_map.antilipschitz_of_uniform_embedding /- _inst_5: normed_space ↝ has_scalar module module mul_action semi_normed_space | |
-/ | |
#print continuous_linear_map.complete_space /- _inst_6: normed_space ↝ has_continuous_smul has_scalar module module semi_normed_space | |
-/ | |
#print continuous_linear_map.norm_smul_right_apply /- _inst_5: normed_space ↝ module module semi_normed_space | |
_inst_6: normed_space ↝ has_continuous_smul has_scalar is_scalar_tower module module semi_normed_space | |
-/ | |
#print continuous_linear_equiv.antilipschitz /- _inst_5: normed_space ↝ module module semi_normed_space | |
_inst_6: normed_space ↝ module module semi_normed_space | |
-/ | |
#print continuous_linear_equiv.one_le_norm_mul_norm_symm /- _inst_6: normed_space ↝ module module semi_normed_space | |
-/ | |
-- analysis/normed_space/pi_Lp.lean | |
#print euclidean_space /- _inst_3: is_R_or_C ↝ | |
_inst_4: fintype ↝ | |
-/ | |
-- analysis/normed_space/riesz_lemma.lean | |
#print riesz_lemma /- _inst_3: normed_space ↝ module | |
-/ | |
-- analysis/seminorm.lean | |
#print absorbs /- _inst_1: nondiscrete_normed_field ↝ has_norm semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_3: module ↝ has_scalar | |
-/ | |
#print absorbent /- _inst_1: nondiscrete_normed_field ↝ has_norm semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_3: module ↝ has_scalar | |
-/ | |
#print balanced /- _inst_1: nondiscrete_normed_field ↝ has_norm semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_3: module ↝ has_scalar | |
-/ | |
#print seminorm.has_coe_to_fun /- _inst_1: nondiscrete_normed_field ↝ normed_field | |
-/ | |
-- analysis/special_functions/polynomials.lean | |
#print polynomial.eventually_no_roots /- _inst_1: normed_linear_ordered_field ↝ linear_ordered_comm_ring | |
-/ | |
-- analysis/specific_limits.lean | |
#print tendsto_pow_at_top_nhds_0_of_norm_lt_1 /- _inst_1: normed_ring ↝ semi_normed_ring | |
-/ | |
#print normed_ring.summable_geometric_of_norm_lt_1 /- _inst_1: normed_ring ↝ semi_normed_ring | |
-/ | |
-- category_theory/abelian/basic.lean | |
#print category_theory.abelian.has_finite_biproducts /- _inst_2: category_theory.abelian ↝ category_theory.limits.has_finite_products category_theory.preadditive | |
-/ | |
#print category_theory.abelian.has_binary_biproducts /- _inst_2: category_theory.abelian ↝ category_theory.limits.has_finite_biproducts category_theory.limits.has_zero_morphisms | |
-/ | |
#print category_theory.abelian.images.is_iso_factor_thru_image /- _inst_3: category_theory.mono ↝ category_theory.mono no_meet_fake_name | |
-/ | |
#print category_theory.abelian.coimages.is_iso_factor_thru_coimage /- _inst_3: category_theory.epi ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.abelian.has_equalizers /- _inst_2: category_theory.abelian ↝ category_theory.limits.has_kernels category_theory.preadditive | |
-/ | |
#print category_theory.abelian.has_pullbacks /- _inst_2: category_theory.abelian ↝ category_theory.limits.has_equalizers category_theory.limits.has_finite_products | |
-/ | |
#print category_theory.abelian.has_coequalizers /- _inst_2: category_theory.abelian ↝ category_theory.limits.has_cokernels category_theory.preadditive | |
-/ | |
#print category_theory.abelian.has_pushouts /- _inst_2: category_theory.abelian ↝ category_theory.limits.has_coequalizers category_theory.limits.has_finite_coproducts | |
-/ | |
#print category_theory.abelian.epi_pullback_of_epi_g /- _inst_4: category_theory.epi ↝ category_theory.epi | |
-/ | |
#print category_theory.abelian.epi_snd_of_is_limit /- _inst_2: category_theory.abelian ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.abelian.epi_fst_of_is_limit /- _inst_2: category_theory.abelian ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.abelian.mono_pushout_of_mono_g /- _inst_4: category_theory.mono ↝ category_theory.mono | |
-/ | |
#print category_theory.abelian.mono_inr_of_is_colimit /- _inst_2: category_theory.abelian ↝ category_theory.mono no_meet_fake_name | |
-/ | |
#print category_theory.abelian.mono_inl_of_is_colimit /- _inst_2: category_theory.abelian ↝ category_theory.mono no_meet_fake_name | |
-/ | |
-- category_theory/abelian/diagram_lemmas/four.lean | |
#print category_theory.abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso /- _inst_9: category_theory.is_iso ↝ category_theory.epi | |
_inst_10: category_theory.is_iso ↝ category_theory.epi category_theory.mono | |
_inst_11: category_theory.is_iso ↝ category_theory.epi category_theory.mono | |
_inst_12: category_theory.is_iso ↝ category_theory.mono | |
-/ | |
-- category_theory/abelian/non_preadditive.lean | |
#print category_theory.non_preadditive_abelian.is_iso_factor_thru_image /- _inst_3: category_theory.mono ↝ category_theory.mono no_meet_fake_name | |
-/ | |
#print category_theory.non_preadditive_abelian.is_iso_factor_thru_coimage /- _inst_3: category_theory.epi ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.non_preadditive_abelian.epi_is_cokernel_of_kernel /- _inst_3: category_theory.epi ↝ category_theory.is_iso no_meet_fake_name | |
-/ | |
#print category_theory.non_preadditive_abelian.mono_is_kernel_of_cokernel /- _inst_3: category_theory.mono ↝ category_theory.is_iso no_meet_fake_name | |
-/ | |
#print category_theory.non_preadditive_abelian.mono_Δ /- _inst_2: category_theory.non_preadditive_abelian ↝ category_theory.limits.has_finite_products | |
-/ | |
#print category_theory.non_preadditive_abelian.lift_map /- _inst_2: category_theory.non_preadditive_abelian ↝ category_theory.limits.has_finite_products category_theory.limits.has_zero_morphisms | |
-/ | |
-- category_theory/abelian/projective.lean | |
#print category_theory.ProjectiveResolution.category_theory.has_projective_resolutions /- _inst_2: category_theory.abelian ↝ category_theory.has_projective_resolution category_theory.limits.has_equalizers category_theory.limits.has_finite_products category_theory.limits.has_images category_theory.limits.has_zero_morphisms category_theory.limits.has_zero_object no_meet_fake_name | |
_inst_3: category_theory.enough_projectives ↝ category_theory.has_projective_resolution no_meet_fake_name | |
-/ | |
-- category_theory/abelian/pseudoelements.lean | |
#print category_theory.abelian.pseudo_equal_trans /- _inst_2: category_theory.abelian ↝ category_theory.epi category_theory.epi category_theory.limits.has_pullbacks no_meet_fake_name | |
-/ | |
-- category_theory/adjunction/lifting.lean | |
#print category_theory.adjoint_square_lift /- _inst_5: category_theory.is_right_adjoint ↝ category_theory.is_right_adjoint | |
_inst_7: category_theory.is_right_adjoint ↝ category_theory.is_right_adjoint | |
-/ | |
#print category_theory.monadic_adjoint_square_lift /- _inst_5: category_theory.is_right_adjoint ↝ category_theory.is_right_adjoint | |
_inst_7: category_theory.is_right_adjoint ↝ category_theory.is_right_adjoint | |
-/ | |
-- category_theory/adjunction/limits.lean | |
#print category_theory.adjunction.has_colimit_comp_equivalence /- _inst_4: category_theory.is_equivalence ↝ category_theory.limits.preserves_colimits no_meet_fake_name | |
-/ | |
#print category_theory.adjunction.has_colimits_of_shape_of_equivalence /- _inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.adjunction.has_colimits_of_equivalence /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.adjunction.has_limit_comp_equivalence /- _inst_4: category_theory.is_equivalence ↝ category_theory.limits.preserves_limits no_meet_fake_name | |
-/ | |
#print category_theory.adjunction.has_limits_of_shape_of_equivalence /- _inst_5: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.adjunction.has_limits_of_equivalence /- _inst_5: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
-- category_theory/adjunction/reflective.lean | |
#print category_theory.unit_obj_eq_map_unit /- _inst_4: category_theory.reflective ↝ category_theory.faithful category_theory.full category_theory.is_right_adjoint category_theory.mono | |
-/ | |
#print category_theory.is_iso_unit_obj /- _inst_4: category_theory.reflective ↝ category_theory.faithful category_theory.full category_theory.is_right_adjoint | |
-/ | |
#print category_theory.functor.ess_image.unit_is_iso /- _inst_4: category_theory.reflective ↝ category_theory.is_iso category_theory.is_right_adjoint no_meet_fake_name | |
-/ | |
#print category_theory.unit_comp_partial_bijective_aux /- _inst_4: category_theory.reflective ↝ category_theory.faithful category_theory.full category_theory.is_right_adjoint | |
-/ | |
-- category_theory/category/default.lean | |
#print category_theory.eq_whisker /- _inst_1: category_theory.category ↝ category_theory.category_struct | |
-/ | |
#print category_theory.whisker_eq /- _inst_1: category_theory.category ↝ category_theory.category_struct | |
-/ | |
#print category_theory.comp_dite /- _inst_1: category_theory.category ↝ category_theory.category_struct | |
-/ | |
#print category_theory.dite_comp /- _inst_1: category_theory.category ↝ category_theory.category_struct | |
-/ | |
#print category_theory.hom_of_le /- _inst_1: preorder ↝ has_le quiver | |
-/ | |
#print category_theory.le_of_hom /- _inst_1: preorder ↝ has_le quiver | |
-/ | |
-- category_theory/category/ulift.lean | |
#print category_theory.as_small /- _inst_2: category_theory.category ↝ | |
-/ | |
-- category_theory/closed/ideal.lean | |
#print category_theory.exponential_ideal.mk_of_iso /- _inst_5: category_theory.reflective ↝ category_theory.is_right_adjoint | |
-/ | |
-- category_theory/concrete_category/bundled_hom.lean | |
#print category_theory.bundled_hom.bundled_hom_of_parent_projection /- _inst_1: category_theory.bundled_hom.parent_projection ↝ | |
-/ | |
-- category_theory/core.lean | |
#print category_theory.core.forget_functor_to_core /- _inst_2: category_theory.groupoid ↝ category_theory.category | |
-/ | |
-- category_theory/endomorphism.lean | |
#print category_theory.End /- _inst_1: category_theory.category_struct ↝ quiver | |
-/ | |
-- category_theory/enriched/basic.lean | |
#print category_theory.forget_enrichment /- _inst_9: category_theory.enriched_category ↝ | |
-/ | |
-- category_theory/filtered.lean | |
#print category_theory.is_filtered_of_semilattice_sup_nonempty /- _inst_2: semilattice_sup ↝ category_theory.is_filtered_or_empty category_theory.small_category | |
-/ | |
#print category_theory.is_filtered_of_directed_order_nonempty /- _inst_2: directed_order ↝ category_theory.is_filtered_or_empty category_theory.small_category | |
-/ | |
#print category_theory.is_cofiltered_of_semilattice_inf_nonempty /- _inst_2: semilattice_inf ↝ category_theory.is_cofiltered_or_empty category_theory.small_category | |
-/ | |
-- category_theory/full_subcategory.lean | |
#print category_theory.induced_category /- _inst_1: category_theory.category ↝ | |
-/ | |
-- category_theory/graded_object.lean | |
#print category_theory.graded_object_with_shift /- _inst_1: add_comm_group ↝ | |
-/ | |
-- category_theory/is_connected.lean | |
#print category_theory.is_connected_of_equivalent /- _inst_4: category_theory.is_connected ↝ category_theory.is_preconnected nonempty | |
-/ | |
#print category_theory.zag /- _inst_1: category_theory.category ↝ quiver | |
-/ | |
#print category_theory.equiv_relation /- _inst_3: category_theory.is_connected ↝ category_theory.is_preconnected nonempty | |
-/ | |
#print category_theory.nonempty_hom_of_connected_groupoid /- _inst_4: category_theory.groupoid ↝ category_theory.category category_theory.is_iso no_meet_fake_name | |
-/ | |
-- category_theory/limits/cofinal.lean | |
#print category_theory.cofinal.colimit_iso /- _inst_3: category_theory.cofinal ↝ category_theory.is_iso category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.cofinal.cofinal_of_colimit_comp_coyoneda_iso_punit /- _inst_3: category_theory.cofinal ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
-- category_theory/limits/comma.lean | |
#print category_theory.comma.has_limits_of_shape /- _inst_5: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
_inst_6: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.comma.has_limits /- _inst_5: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
_inst_6: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.comma.has_colimits_of_shape /- _inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
_inst_6: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.comma.has_colimits /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
_inst_6: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.arrow.has_limits_of_shape /- _inst_5: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.arrow.has_limits /- _inst_5: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.arrow.has_colimits_of_shape /- _inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.arrow.has_colimits /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.structured_arrow.has_limits_of_shape /- _inst_5: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.structured_arrow.has_limits /- _inst_5: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.costructured_arrow.has_colimits_of_shape /- _inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.costructured_arrow.has_colimits /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/limits/constructions/over/connected.lean | |
#print category_theory.over.has_connected_limits /- _inst_4: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
-- category_theory/limits/creates.lean | |
#print category_theory.has_limits_of_shape_of_has_limits_of_shape_creates_limits_of_shape /- _inst_4: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.has_limits_of_has_limits_creates_limits /- _inst_4: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.has_colimits_of_shape_of_has_colimits_of_shape_creates_colimits_of_shape /- _inst_4: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.has_colimits_of_has_colimits_creates_colimits /- _inst_4: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.preserves_limits_of_creates_limits_and_has_limits /- _inst_5: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.preserves_colimits_of_creates_colimits_and_has_colimits /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/limits/functor_category.lean | |
#print category_theory.limits.functor_category_has_limits_of_shape /- _inst_4: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.limits.functor_category_has_colimits_of_shape /- _inst_4: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.limits.functor_category_has_limits /- _inst_4: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.limits.functor_category_has_colimits /- _inst_4: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.limits.evaluation_preserves_limits /- _inst_4: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.limits.evaluation_preserves_colimits /- _inst_4: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/limits/has_limits.lean | |
#print category_theory.limits.limit.map_pre' /- _inst_4: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.limits.limit.map_post /- _inst_4: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
_inst_6: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.limits.has_limits_of_shape_of_equivalence /- _inst_5: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.limits.colimit.pre_map' /- _inst_4: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.limits.has_colimits_of_shape_of_equivalence /- _inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
-- category_theory/limits/over.lean | |
#print category_theory.over.category_theory.limits.has_colimits_of_shape /- _inst_3: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.over.category_theory.limits.has_colimits /- _inst_3: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
#print category_theory.under.category_theory.limits.has_limits_of_shape /- _inst_3: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.under.category_theory.limits.has_limits /- _inst_3: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
-- category_theory/limits/preserves/basic.lean | |
#print category_theory.limits.comp_reflects_limits_of_shape /- _inst_4: category_theory.limits.reflects_limits_of_shape ↝ category_theory.limits.reflects_limit no_meet_fake_name | |
-/ | |
#print category_theory.limits.comp_reflects_limits /- _inst_4: category_theory.limits.reflects_limits ↝ category_theory.limits.reflects_limits_of_shape no_meet_fake_name | |
_inst_5: category_theory.limits.reflects_limits ↝ category_theory.limits.reflects_limits_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.comp_reflects_colimits_of_shape /- _inst_4: category_theory.limits.reflects_colimits_of_shape ↝ category_theory.limits.reflects_colimit no_meet_fake_name | |
-/ | |
#print category_theory.limits.comp_reflects_colimits /- _inst_4: category_theory.limits.reflects_colimits ↝ category_theory.limits.reflects_colimits_of_shape no_meet_fake_name | |
_inst_5: category_theory.limits.reflects_colimits ↝ category_theory.limits.reflects_colimits_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.preserves_limits_of_reflects_of_preserves /- _inst_5: category_theory.limits.reflects_limits ↝ category_theory.limits.reflects_limits_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.reflects_limits_of_shape_of_nat_iso /- _inst_4: category_theory.limits.reflects_limits_of_shape ↝ category_theory.limits.reflects_limit | |
-/ | |
#print category_theory.limits.reflects_limits_of_nat_iso /- _inst_4: category_theory.limits.reflects_limits ↝ category_theory.limits.reflects_limits_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.reflects_limits_of_shape_of_reflects_isomorphisms /- _inst_5: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.limits.reflects_limits_of_reflects_isomorphisms /- _inst_5: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.limits.preserves_colimits_of_reflects_of_preserves /- _inst_5: category_theory.limits.reflects_colimits ↝ category_theory.limits.reflects_colimits_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.reflects_colimits_of_shape_of_nat_iso /- _inst_4: category_theory.limits.reflects_colimits_of_shape ↝ category_theory.limits.reflects_colimit | |
-/ | |
#print category_theory.limits.reflects_colimits_of_nat_iso /- _inst_4: category_theory.limits.reflects_colimits ↝ category_theory.limits.reflects_colimits_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.reflects_colimits_of_shape_of_reflects_isomorphisms /- _inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.limits.reflects_colimits_of_reflects_isomorphisms /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/limits/preserves/functor_category.lean | |
#print category_theory.functor_category.prod_preserves_colimits /- _inst_4: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/limits/shapes/biproducts.lean | |
#print category_theory.limits.has_finite_products_of_has_finite_biproducts /- _inst_4: category_theory.limits.has_finite_biproducts ↝ category_theory.limits.has_biproduct no_meet_fake_name | |
-/ | |
#print category_theory.limits.has_finite_coproducts_of_has_finite_biproducts /- _inst_4: category_theory.limits.has_finite_biproducts ↝ category_theory.limits.has_biproduct no_meet_fake_name | |
-/ | |
#print category_theory.limits.has_binary_biproducts_of_finite_biproducts /- _inst_4: category_theory.limits.has_finite_biproducts ↝ category_theory.limits.has_biproducts_of_shape no_meet_fake_name | |
-/ | |
#print category_theory.limits.has_binary_products_of_has_binary_biproducts /- _inst_4: category_theory.limits.has_binary_biproducts ↝ category_theory.limits.has_binary_biproduct | |
-/ | |
#print category_theory.limits.has_binary_coproducts_of_has_binary_biproducts /- _inst_4: category_theory.limits.has_binary_biproducts ↝ category_theory.limits.has_binary_biproduct | |
-/ | |
#print category_theory.limits.biprod.symmetry' /- _inst_4: category_theory.limits.has_binary_biproducts ↝ category_theory.limits.has_binary_biproduct | |
-/ | |
#print category_theory.limits.biproduct.matrix_map /- _inst_2: category_theory.preadditive ↝ category_theory.limits.has_zero_morphisms | |
-/ | |
#print category_theory.limits.biproduct.map_matrix /- _inst_2: category_theory.preadditive ↝ category_theory.limits.has_zero_morphisms | |
-/ | |
#print category_theory.limits.biprod.map_eq /- _inst_6: category_theory.limits.has_binary_biproducts ↝ category_theory.limits.has_binary_biproduct | |
-/ | |
-- category_theory/limits/shapes/finite_limits.lean | |
#print category_theory.limits.has_finite_limits_of_has_limits /- _inst_2: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.limits.has_finite_colimits_of_has_colimits /- _inst_2: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/limits/shapes/images.lean | |
#print category_theory.limits.image.map_hom_mk'_ι /- _inst_5: category_theory.limits.has_image ↝ category_theory.limits.has_image no_meet_fake_name | |
_inst_6: category_theory.limits.has_image ↝ category_theory.limits.has_image no_meet_fake_name | |
-/ | |
-- category_theory/limits/shapes/reflexive.lean | |
#print category_theory.limits.has_coequalizer_of_common_section /- _inst_3: category_theory.limits.has_reflexive_coequalizers ↝ category_theory.limits.has_coequalizer | |
-/ | |
#print category_theory.limits.has_equalizer_of_common_retraction /- _inst_3: category_theory.limits.has_coreflexive_equalizers ↝ category_theory.limits.has_equalizer | |
-/ | |
-- category_theory/limits/shapes/strong_epi.lean | |
#print category_theory.strong_epi_comp /- _inst_2: category_theory.strong_epi ↝ category_theory.arrow.has_lift category_theory.epi no_meet_fake_name | |
_inst_3: category_theory.strong_epi ↝ category_theory.arrow.has_lift category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.is_iso_of_mono_of_strong_epi /- _inst_3: category_theory.strong_epi ↝ category_theory.arrow.has_lift no_meet_fake_name | |
-/ | |
-- category_theory/linear/default.lean | |
#print category_theory.linear.category_theory.End.module /- _inst_3: comm_ring ↝ semiring | |
-/ | |
-- category_theory/monad/adjunction.lean | |
#print category_theory.μ_iso_of_reflective /- _inst_3: category_theory.reflective ↝ category_theory.faithful category_theory.full category_theory.is_right_adjoint | |
-/ | |
#print category_theory.reflective.comparison_ess_surj /- _inst_3: category_theory.reflective ↝ category_theory.is_iso category_theory.is_right_adjoint no_meet_fake_name | |
-/ | |
-- category_theory/monad/limits.lean | |
#print category_theory.comp_comparison_forget_has_limit /- _inst_4: category_theory.monadic_right_adjoint ↝ category_theory.is_right_adjoint | |
-/ | |
#print category_theory.comp_comparison_has_limit /- _inst_4: category_theory.monadic_right_adjoint ↝ category_theory.is_right_adjoint category_theory.limits.has_limit no_meet_fake_name | |
_inst_5: category_theory.limits.has_limit ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.monadic_creates_limits /- _inst_4: category_theory.monadic_right_adjoint ↝ category_theory.is_equivalence category_theory.is_right_adjoint | |
-/ | |
#print category_theory.monadic_creates_colimit_of_preserves_colimit /- _inst_4: category_theory.monadic_right_adjoint ↝ category_theory.is_equivalence category_theory.is_right_adjoint | |
-/ | |
#print category_theory.has_limit_of_reflective /- _inst_5: category_theory.reflective ↝ category_theory.monadic_right_adjoint | |
-/ | |
#print category_theory.has_limits_of_shape_of_reflective /- _inst_4: category_theory.limits.has_limits_of_shape ↝ category_theory.limits.has_limit no_meet_fake_name | |
-/ | |
#print category_theory.has_limits_of_reflective /- _inst_4: category_theory.limits.has_limits ↝ category_theory.limits.has_limits_of_shape | |
-/ | |
#print category_theory.has_colimits_of_shape_of_reflective /- _inst_4: category_theory.reflective ↝ category_theory.faithful category_theory.full category_theory.is_right_adjoint | |
_inst_5: category_theory.limits.has_colimits_of_shape ↝ category_theory.limits.has_colimit no_meet_fake_name | |
-/ | |
#print category_theory.has_colimits_of_reflective /- _inst_5: category_theory.limits.has_colimits ↝ category_theory.limits.has_colimits_of_shape | |
-/ | |
-- category_theory/monoidal/transport.lean | |
#print category_theory.monoidal.transported /- _inst_2: category_theory.monoidal_category ↝ | |
-/ | |
-- category_theory/preadditive/biproducts.lean | |
#print category_theory.is_iso_left_of_is_iso_biprod_map /- _inst_3: category_theory.limits.has_binary_biproducts ↝ category_theory.limits.has_binary_biproduct | |
-/ | |
#print category_theory.biprod.column_nonzero_of_iso /- _inst_3: category_theory.limits.has_binary_biproducts ↝ category_theory.limits.has_binary_biproduct | |
-/ | |
-- category_theory/preadditive/functor_category.lean | |
#print category_theory.nat_trans.app_zero /- _inst_3: category_theory.preadditive ↝ category_theory.limits.has_zero_morphisms | |
-/ | |
-- category_theory/preadditive/opposite.lean | |
#print category_theory.unop_zero /- _inst_2: category_theory.preadditive ↝ category_theory.limits.has_zero_morphisms | |
-/ | |
#print category_theory.op_zero /- _inst_2: category_theory.preadditive ↝ category_theory.limits.has_zero_morphisms | |
-/ | |
-- category_theory/sites/grothendieck.lean | |
#print category_theory.grothendieck_topology.right_ore_condition /- _inst_2: category_theory.category ↝ category_theory.category_struct | |
-/ | |
-- category_theory/sites/sieves.lean | |
#print category_theory.presieve /- _inst_1: category_theory.category ↝ quiver | |
-/ | |
-- category_theory/subobject/limits.lean | |
#print category_theory.limits.image_subobject_comp_le_epi_of_epi /- _inst_3: category_theory.limits.has_equalizers ↝ category_theory.epi no_meet_fake_name | |
_inst_4: category_theory.epi ↝ category_theory.epi no_meet_fake_name | |
-/ | |
#print category_theory.limits.image_subobject_iso_comp /- _inst_3: category_theory.limits.has_equalizers ↝ category_theory.is_iso category_theory.limits.has_image no_meet_fake_name | |
_inst_4: category_theory.is_iso ↝ category_theory.is_iso category_theory.limits.has_image no_meet_fake_name | |
-/ | |
-- category_theory/subterminal.lean | |
#print category_theory.is_subterminal /- _inst_1: category_theory.category ↝ quiver | |
-/ | |
-- combinatorics/simple_graph/basic.lean | |
#print simple_graph.decidable_mem_common_neighbors /- _inst_1: decidable_rel ↝ decidable_pred no_meet_fake_name | |
-/ | |
-- computability/partrec.lean | |
#print partrec /- _inst_1: primcodable ↝ encodable | |
_inst_2: primcodable ↝ encodable | |
-/ | |
-- computability/primrec.lean | |
#print primrec /- _inst_1: primcodable ↝ encodable | |
_inst_2: primcodable ↝ encodable | |
-/ | |
-- computability/reduce.lean | |
#print to_nat /- _inst_1: primcodable ↝ encodable | |
-/ | |
-- computability/turing_machine.lean | |
#print turing.TM0.machine /- _inst_2: inhabited ↝ | |
-/ | |
#print turing.TM1to0.Λ' /- _inst_2: inhabited ↝ | |
_inst_3: inhabited ↝ | |
-/ | |
#print turing.TM2to1.Γ' /- _inst_1: decidable_eq ↝ | |
-/ | |
#print turing.TM2to1.st_run /- _inst_2: inhabited ↝ | |
-/ | |
-- control/basic.lean | |
#print fish /- _inst_3: monad ↝ has_bind no_meet_fake_name | |
-/ | |
#print succeeds /- _inst_1: alternative ↝ functor has_orelse has_pure no_meet_fake_name | |
-/ | |
#print mtry /- _inst_1: alternative ↝ functor has_orelse has_pure no_meet_fake_name | |
-/ | |
-- control/bitraversable/instances.lean | |
#print const.bitraverse /- _inst_2: applicative ↝ | |
-/ | |
-- control/fold.lean | |
#print traversable.mfoldl.unop_of_free_monoid /- _inst_2: is_lawful_monad ↝ | |
-/ | |
-- control/functor.lean | |
#print functor.comp.has_pure /- _inst_1: applicative ↝ has_pure no_meet_fake_name | |
_inst_2: applicative ↝ has_pure no_meet_fake_name | |
-/ | |
-- control/monad/cont.lean | |
#print cont_t.monad_lift /- _inst_1: monad ↝ has_bind no_meet_fake_name | |
-/ | |
#print writer_t.monad_cont /- _inst_1: monad ↝ | |
-/ | |
#print state_t.mk_label /- _inst_1: monad ↝ | |
-/ | |
-- control/monad/writer.lean | |
#print writer_t.ext /- _inst_1: monad ↝ | |
-/ | |
#print writer_t.tell /- _inst_1: monad ↝ has_pure no_meet_fake_name | |
-/ | |
#print writer_t.pure /- _inst_1: monad ↝ has_pure no_meet_fake_name | |
-/ | |
#print writer_t.bind /- _inst_1: monad ↝ has_bind has_pure no_meet_fake_name | |
-/ | |
#print writer_t.lift /- _inst_1: monad ↝ functor no_meet_fake_name | |
-/ | |
#print writer_t.monad_map /- _inst_2: monad ↝ | |
_inst_3: monad ↝ | |
-/ | |
#print writer_t.adapt /- _inst_1: monad ↝ functor no_meet_fake_name | |
-/ | |
#print writer_t.monad_except /- _inst_1: monad ↝ | |
-/ | |
#print reader_t.monad_writer /- _inst_1: monad ↝ has_monad_lift no_meet_fake_name | |
-/ | |
-- control/traversable/instances.lean | |
#print option.comp_traverse /- _inst_3: is_lawful_applicative ↝ | |
-/ | |
#print list.comp_traverse /- _inst_3: is_lawful_applicative ↝ | |
-/ | |
#print sum.comp_traverse /- _inst_3: is_lawful_applicative ↝ | |
-/ | |
-- control/uliftable.lean | |
#print uliftable.adapt_up /- _inst_2: monad ↝ has_bind no_meet_fake_name | |
-/ | |
#print uliftable.adapt_down /- _inst_1: monad ↝ has_bind no_meet_fake_name | |
-/ | |
-- data/buffer/parser/basic.lean | |
#print parser.and_then_eq_bind /- _inst_1: monad ↝ has_bind no_meet_fake_name | |
-/ | |
#print parser.mono.seq /- _inst_2: parser.mono ↝ no_meet_fake_name parser.mono | |
-/ | |
#print parser.mono.foldr /- _inst_1: parser.mono ↝ no_meet_fake_name parser.mono | |
-/ | |
#print parser.mono.foldl /- _inst_1: parser.mono ↝ no_meet_fake_name parser.mono | |
-/ | |
#print parser.static.seq /- _inst_2: parser.static ↝ no_meet_fake_name parser.static | |
-/ | |
#print parser.static.foldr /- _inst_1: parser.static ↝ no_meet_fake_name parser.static | |
-/ | |
#print parser.static.foldl /- _inst_1: parser.static ↝ no_meet_fake_name parser.static | |
-/ | |
#print parser.unfailing.seq /- _inst_2: parser.unfailing ↝ no_meet_fake_name parser.unfailing | |
-/ | |
#print parser.err_static.seq /- _inst_3: parser.err_static ↝ no_meet_fake_name parser.err_static | |
-/ | |
#print parser.err_static.seq_of_unfailing /- _inst_2: parser.unfailing ↝ no_meet_fake_name parser.unfailing | |
-/ | |
#print parser.step.seq /- _inst_2: parser.static ↝ no_meet_fake_name parser.static | |
-/ | |
#print parser.step.seq' /- _inst_2: parser.step ↝ no_meet_fake_name parser.step | |
-/ | |
#print parser.prog.seq /- _inst_2: parser.mono ↝ no_meet_fake_name parser.mono | |
-/ | |
-- data/complex/exponential.lean | |
#print is_cau_geo_series /- _inst_5: field ↝ domain | |
-/ | |
-- data/complex/is_R_or_C.lean | |
#print norm_smul_inv_norm /- _inst_3: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
-- data/complex/module.lean | |
#print module.complex_to_real /- _inst_1: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- data/dfinsupp.lean | |
#print dfinsupp.prod_inv /- _inst_3: comm_group ↝ comm_monoid has_inv is_group_hom is_monoid_hom no_meet_fake_name | |
-/ | |
#print dfinsupp.sum_neg /- _inst_3: add_comm_group ↝ add_comm_monoid has_neg is_add_group_hom is_add_monoid_hom no_meet_fake_name | |
-/ | |
#print monoid_hom.coe_dfinsupp_prod /- _inst_4: monoid ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.coe_dfinsupp_sum /- _inst_4: add_monoid ↝ add_zero_class | |
-/ | |
#print add_monoid_hom.dfinsupp_sum_apply /- _inst_4: add_monoid ↝ add_zero_class | |
-/ | |
#print monoid_hom.dfinsupp_prod_apply /- _inst_4: monoid ↝ mul_one_class | |
-/ | |
-- data/equiv/encodable/basic.lean | |
#print directed.le_sequence /- _inst_3: preorder ↝ has_le | |
-/ | |
-- data/equiv/ring.lean | |
#print ring_equiv.map_zero /- _inst_1: non_unital_non_assoc_semiring ↝ add_zero_class has_mul | |
_inst_2: non_unital_non_assoc_semiring ↝ add_zero_class has_mul | |
-/ | |
#print ring_equiv.map_eq_zero_iff /- _inst_1: non_unital_non_assoc_semiring ↝ add_zero_class has_mul | |
_inst_2: non_unital_non_assoc_semiring ↝ add_zero_class has_mul | |
-/ | |
#print ring_equiv.map_ne_zero_iff /- _inst_1: non_unital_non_assoc_semiring ↝ add_zero_class has_mul | |
_inst_2: non_unital_non_assoc_semiring ↝ add_zero_class has_mul | |
-/ | |
#print ring_equiv.map_one /- _inst_1: non_assoc_semiring ↝ has_add mul_one_class | |
_inst_2: non_assoc_semiring ↝ has_add mul_one_class | |
-/ | |
#print ring_equiv.map_eq_one_iff /- _inst_1: non_assoc_semiring ↝ has_add mul_one_class | |
_inst_2: non_assoc_semiring ↝ has_add mul_one_class | |
-/ | |
#print ring_equiv.map_ne_one_iff /- _inst_1: non_assoc_semiring ↝ has_add mul_one_class | |
_inst_2: non_assoc_semiring ↝ has_add mul_one_class | |
-/ | |
#print ring_equiv.map_neg /- _inst_1: ring ↝ add_group has_mul | |
_inst_2: ring ↝ add_group has_mul | |
-/ | |
#print ring_equiv.map_sub /- _inst_1: ring ↝ add_group has_mul | |
_inst_2: ring ↝ add_group has_mul | |
-/ | |
#print ring_equiv.to_equiv_commutes /- _inst_1: non_assoc_semiring ↝ has_add has_mul | |
_inst_2: non_assoc_semiring ↝ has_add has_mul | |
-/ | |
-- data/equiv/transfer_instance.lean | |
#print ring_equiv.local_ring /- _inst_1: comm_ring ↝ integral_domain | |
-/ | |
-- data/fin.lean | |
#print fin.order_iso_subsingleton /- _inst_1: preorder ↝ has_le | |
-/ | |
-- data/fin_enum.lean | |
#print fin_enum.mem_pi /- _inst_1: fin_enum ↝ decidable_eq | |
-/ | |
-- data/finset/lattice.lean | |
#print finset.supr_option_to_finset /- _inst_1: complete_lattice ↝ has_Sup | |
-/ | |
-- data/finsupp/basic.lean | |
#print ring_hom.map_finsupp_sum /- _inst_2: semiring ↝ non_assoc_semiring | |
_inst_3: semiring ↝ non_assoc_semiring | |
-/ | |
#print monoid_hom.coe_finsupp_prod /- _inst_2: monoid ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.coe_finsupp_sum /- _inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print add_monoid_hom.finsupp_sum_apply /- _inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print monoid_hom.finsupp_prod_apply /- _inst_2: monoid ↝ mul_one_class | |
-/ | |
#print finsupp.prod_add_index /- _inst_1: add_comm_monoid ↝ add_zero_class | |
-/ | |
#print finsupp.sum_add_index /- _inst_1: add_comm_monoid ↝ add_zero_class | |
-/ | |
#print finsupp.prod_sum_index /- _inst_1: add_comm_monoid ↝ has_zero | |
-/ | |
#print finsupp.sum_sum_index /- _inst_1: add_comm_monoid ↝ has_zero | |
-/ | |
#print finsupp.eq_zero_of_comap_domain_eq_zero /- _inst_1: add_comm_monoid ↝ has_zero | |
-/ | |
#print finsupp.coe_smul /- _inst_2: distrib_mul_action ↝ has_scalar has_scalar | |
-/ | |
#print finsupp.smul_apply /- _inst_2: distrib_mul_action ↝ has_scalar has_scalar | |
-/ | |
#print finsupp.is_scalar_tower /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_5: distrib_mul_action ↝ has_scalar has_scalar | |
-/ | |
#print finsupp.smul_comm_class /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_5: distrib_mul_action ↝ has_scalar has_scalar | |
-/ | |
#print finsupp.distrib_mul_action_hom_ext /- _inst_1: semiring ↝ distrib_mul_action monoid no_meet_fake_name | |
_inst_2: add_comm_monoid ↝ add_monoid distrib_mul_action no_meet_fake_name | |
_inst_3: add_comm_monoid ↝ add_monoid | |
_inst_4: distrib_mul_action ↝ distrib_mul_action no_meet_fake_name | |
-/ | |
-- data/finsupp/lattice.lean | |
#print finsupp.bot_eq_zero /- _inst_3: canonically_linear_ordered_add_monoid ↝ canonically_ordered_add_monoid | |
-/ | |
-- data/fintype/basic.lean | |
#print fintype.card_unique /- _inst_1: unique ↝ inhabited subsingleton | |
-/ | |
#print fintype.univ_of_is_empty /- _inst_1: is_empty ↝ fintype | |
-/ | |
#print fintype.card_of_is_empty /- _inst_1: is_empty ↝ fintype | |
-/ | |
#print unique.fintype /- _inst_1: unique ↝ inhabited subsingleton | |
-/ | |
#print univ_unique /- _inst_1: unique ↝ fintype inhabited | |
-/ | |
#print fintype.preorder.well_founded /- _inst_2: preorder ↝ has_lt is_irrefl is_trans | |
-/ | |
#print fintype.linear_order.is_well_order /- _inst_2: linear_order ↝ is_trichotomous preorder | |
-/ | |
#print infinite.nonempty /- _inst_1: infinite ↝ nonempty | |
-/ | |
-- data/fp/basic.lean | |
#print fp.div_nat_lt_two_pow /- C: fp.float_cfg ↝ | |
-/ | |
-- data/holor.lean | |
#print holor.zero_mul /- _inst_1: ring ↝ mul_zero_class | |
-/ | |
#print holor.mul_zero /- _inst_1: ring ↝ mul_zero_class | |
-/ | |
#print holor.mul_scalar_mul /- _inst_1: monoid ↝ has_mul | |
-/ | |
#print holor.unit_vec /- _inst_1: monoid ↝ has_one | |
_inst_2: add_monoid ↝ has_zero | |
-/ | |
#print holor.slice_unit_vec_mul /- _inst_1: ring ↝ semiring | |
-/ | |
#print holor.cprank_max_nil /- _inst_1: monoid ↝ has_mul | |
-/ | |
#print holor.cprank_max_1 /- _inst_1: monoid ↝ has_mul | |
-/ | |
#print holor.cprank_max_sum /- _inst_1: ring ↝ semiring | |
-/ | |
-- data/int/cast.lean | |
#print monoid_hom.ext_int /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print ring_hom.ext_int /- _inst_3: semiring ↝ non_assoc_semiring | |
-/ | |
-- data/list/basic.lean | |
#print list.prod_nil /- _inst_1: monoid ↝ has_mul has_one | |
-/ | |
#print list.sum_nil /- _inst_1: add_monoid ↝ has_add has_zero | |
-/ | |
#print list.prod_singleton /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print list.sum_singleton /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print list.prod_cons /- _inst_1: monoid ↝ is_associative mul_one_class | |
-/ | |
#print list.sum_cons /- _inst_1: add_monoid ↝ add_zero_class is_associative | |
-/ | |
#print list.sum_append /- _inst_1: add_monoid ↝ add_zero_class is_associative | |
-/ | |
#print list.prod_append /- _inst_1: monoid ↝ is_associative mul_one_class | |
-/ | |
#print list.prod_hom /- _inst_1: monoid ↝ mul_one_class | |
_inst_2: monoid ↝ mul_one_class | |
-/ | |
#print list.sum_hom /- _inst_1: add_monoid ↝ add_zero_class | |
_inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print list.one_le_prod_of_one_le /- _inst_1: ordered_comm_monoid ↝ covariant_class monoid preorder | |
-/ | |
#print list.sum_nonneg /- _inst_1: ordered_add_comm_monoid ↝ add_monoid covariant_class preorder | |
-/ | |
#print list.length_pos_of_sum_pos /- _inst_1: ordered_cancel_add_comm_monoid ↝ add_monoid preorder | |
-/ | |
#print list.dvd_sum /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print list.exists_lt_of_sum_lt /- _inst_1: linear_ordered_cancel_add_comm_monoid ↝ add_monoid contravariant_class covariant_class linear_order | |
-/ | |
#print list.alternating_prod_nil /- _inst_1: comm_group ↝ has_inv has_mul has_one | |
-/ | |
#print list.alternating_sum_nil /- _inst_1: add_comm_group ↝ has_add has_neg has_zero | |
-/ | |
#print list.alternating_sum_singleton /- _inst_1: add_comm_group ↝ has_add has_neg has_zero | |
-/ | |
#print list.alternating_prod_singleton /- _inst_1: comm_group ↝ has_inv has_mul has_one | |
-/ | |
#print list.alternating_prod_cons_cons /- _inst_1: comm_group ↝ has_inv has_mul has_one | |
-/ | |
#print list.alternating_sum_cons_cons' /- _inst_1: add_comm_group ↝ has_add has_neg has_zero | |
-/ | |
#print list.alternating_sum_cons_cons /- _inst_2: add_comm_group ↝ sub_neg_monoid | |
-/ | |
#print list.lex.is_strict_total_order /- _inst_1: is_strict_total_order' ↝ is_asymm is_order_connected is_trichotomous | |
-/ | |
#print list.insert_nil /- _inst_1: decidable_eq ↝ has_insert | |
-/ | |
#print list.sum_map_mul_left /- _inst_1: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print list.sum_map_mul_right /- _inst_1: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
-- data/list/defs.lean | |
#print list.mfoldl_with_index /- _inst_1: monad ↝ has_bind has_pure no_meet_fake_name | |
-/ | |
#print list.mfoldr_with_index /- _inst_1: monad ↝ has_bind has_pure no_meet_fake_name | |
-/ | |
-- data/list/forall2.lean | |
#print list.rel_sum /- _inst_1: add_monoid ↝ has_add has_zero | |
_inst_2: add_monoid ↝ has_add has_zero | |
-/ | |
#print list.rel_prod /- _inst_1: monoid ↝ has_mul has_one | |
_inst_2: monoid ↝ has_mul has_one | |
-/ | |
-- data/list/func.lean | |
#print list.func.get_add /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print list.func.nil_add /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print list.func.add_nil /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print list.func.nil_sub /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
-- data/list/nodup_equiv_fin.lean | |
#print list.sorted.nth_le_strict_mono /- _inst_1: preorder ↝ has_lt | |
-/ | |
-- data/list/perm.lean | |
#print list.perm.sum_eq' /- _inst_1: add_monoid ↝ add_semigroup has_zero | |
-/ | |
#print list.perm.prod_eq' /- _inst_1: monoid ↝ has_one semigroup | |
-/ | |
#print list.perm.sum_eq /- _inst_1: add_comm_monoid ↝ has_add has_zero is_associative is_commutative | |
-/ | |
#print list.perm.prod_eq /- _inst_1: comm_monoid ↝ has_mul has_one is_associative is_commutative | |
-/ | |
-- data/list/zip.lean | |
#print list.sum_zip_with_distrib_left /- _inst_1: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
-- data/matrix/basic.lean | |
#print matrix /- _inst_1: fintype ↝ | |
_inst_2: fintype ↝ | |
-/ | |
#print matrix.map_add /- _inst_7: add_monoid ↝ add_zero_class | |
_inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.diagonal_add /- _inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.bit1_apply /- _inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.dot_product_comm /- _inst_7: comm_semiring ↝ add_comm_monoid comm_semigroup | |
-/ | |
#print matrix.ring_hom_map_one /- _inst_8: semiring ↝ non_assoc_semiring | |
_inst_9: semiring ↝ non_assoc_semiring | |
-/ | |
#print matrix.ring_equiv_map_one /- _inst_8: semiring ↝ non_assoc_semiring | |
_inst_9: semiring ↝ non_assoc_semiring | |
-/ | |
#print matrix.add_monoid_hom_map_zero /- _inst_7: add_monoid ↝ add_zero_class | |
_inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.add_equiv_map_zero /- _inst_7: add_monoid ↝ add_zero_class | |
_inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.ring_hom_map_zero /- _inst_7: semiring ↝ non_assoc_semiring | |
_inst_8: semiring ↝ non_assoc_semiring | |
-/ | |
#print matrix.ring_equiv_map_zero /- _inst_7: semiring ↝ non_unital_non_assoc_semiring | |
_inst_8: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.smul_eq_diagonal_mul /- _inst_7: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.smul_mul /- _inst_7: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.mul_smul /- _inst_7: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.mul_mul_right /- _inst_7: comm_semiring ↝ distrib_mul_action no_meet_fake_name semiring smul_comm_class | |
-/ | |
#print matrix.scalar.commute /- _inst_7: comm_semiring ↝ distrib_mul_action no_meet_fake_name semiring smul_comm_class | |
-/ | |
#print matrix.vec_mul_vec_eq /- _inst_7: non_unital_non_assoc_semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.std_basis_matrix /- _inst_7: semiring ↝ has_zero | |
-/ | |
#print matrix.mul_vec_smul_assoc /- _inst_7: comm_semiring ↝ distrib_mul_action no_meet_fake_name semiring smul_comm_class | |
-/ | |
#print matrix.transpose_smul /- _inst_7: semiring ↝ has_scalar | |
-/ | |
#print matrix.minor_smul /- _inst_9: module ↝ has_scalar | |
-/ | |
#print matrix.minor_mul /- _inst_7: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.row_vec_mul /- _inst_7: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.col_vec_mul /- _inst_7: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.col_mul_vec /- _inst_7: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.row_mul_vec /- _inst_7: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print ring_hom.map_matrix_mul /- _inst_7: semiring ↝ non_assoc_semiring | |
_inst_8: semiring ↝ non_assoc_semiring | |
-/ | |
-- data/matrix/block.lean | |
#print matrix.from_blocks_smul /- _inst_7: semiring ↝ has_mul | |
-/ | |
#print matrix.from_blocks_add /- _inst_7: semiring ↝ has_add | |
-/ | |
#print matrix.from_blocks_multiply /- _inst_7: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.from_blocks_diagonal /- _inst_7: semiring ↝ has_zero | |
-/ | |
#print matrix.from_blocks_one /- _inst_7: semiring ↝ mul_zero_one_class | |
-/ | |
#print matrix.block_diagonal_add /- _inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.block_diagonal_mul /- _inst_9: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.block_diagonal_smul /- _inst_10: module ↝ distrib_mul_action has_scalar | |
-/ | |
#print matrix.block_diagonal'_add /- _inst_8: add_monoid ↝ add_zero_class | |
-/ | |
#print matrix.block_diagonal'_mul /- _inst_9: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.block_diagonal'_smul /- _inst_10: module ↝ distrib_mul_action has_scalar | |
-/ | |
-- data/matrix/char_p.lean | |
#print matrix.char_p /- _inst_2: ring ↝ module semiring | |
-/ | |
-- data/matrix/dmatrix.lean | |
#print dmatrix /- _inst_1: fintype ↝ | |
_inst_2: fintype ↝ | |
-/ | |
-- data/matrix/notation.lean | |
#print matrix.empty_mul /- _inst_4: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.empty_mul_empty /- _inst_4: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.mul_empty /- _inst_4: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.mul_val_succ /- _inst_4: semiring ↝ add_comm_monoid has_mul | |
-/ | |
#print matrix.empty_vec_mul /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.vec_mul_empty /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.cons_vec_mul /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.vec_mul_cons /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.empty_mul_vec /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.mul_vec_empty /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.cons_mul_vec /- _inst_4: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print matrix.empty_vec_mul_vec /- _inst_4: semiring ↝ has_mul | |
-/ | |
#print matrix.vec_mul_vec_empty /- _inst_4: semiring ↝ has_mul | |
-/ | |
#print matrix.cons_vec_mul_vec /- _inst_4: semiring ↝ has_mul | |
-/ | |
#print matrix.vec_mul_vec_cons /- _inst_4: semiring ↝ has_mul | |
-/ | |
#print matrix.smul_empty /- _inst_4: semiring ↝ has_scalar | |
-/ | |
#print matrix.smul_mat_empty /- _inst_4: semiring ↝ has_scalar | |
-/ | |
#print matrix.smul_cons /- _inst_4: semiring ↝ has_mul | |
-/ | |
#print matrix.smul_mat_cons /- _inst_4: semiring ↝ has_mul | |
-/ | |
-- data/matrix/pequiv.lean | |
#print pequiv.mul_matrix_apply /- _inst_6: semiring ↝ non_assoc_semiring | |
-/ | |
#print pequiv.matrix_mul_apply /- _inst_5: semiring ↝ non_assoc_semiring | |
-/ | |
#print pequiv.to_matrix_injective /- _inst_6: monoid_with_zero ↝ mul_zero_one_class | |
-/ | |
-- data/multiset/basic.lean | |
#print multiset.sum_map_mul_left /- _inst_1: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print multiset.sum_map_mul_right /- _inst_1: semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print multiset.prod_map_inv /- _inst_1: comm_group ↝ comm_monoid has_inv is_group_hom is_monoid_hom no_meet_fake_name | |
-/ | |
#print multiset.sum_map_neg /- _inst_1: add_comm_group ↝ add_comm_monoid has_neg is_add_group_hom is_add_monoid_hom no_meet_fake_name | |
-/ | |
#print multiset.le_prod_of_submultiplicative_on_pred /- _inst_2: ordered_comm_monoid ↝ comm_monoid covariant_class preorder | |
-/ | |
#print multiset.le_sum_of_subadditive_on_pred /- _inst_2: ordered_add_comm_monoid ↝ add_comm_monoid covariant_class preorder | |
-/ | |
#print multiset.le_sum_nonempty_of_subadditive_on_pred /- _inst_2: ordered_add_comm_monoid ↝ add_comm_monoid covariant_class preorder | |
-/ | |
#print multiset.le_prod_nonempty_of_submultiplicative_on_pred /- _inst_2: ordered_comm_monoid ↝ comm_monoid covariant_class preorder | |
-/ | |
#print multiset.dvd_sum /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print multiset.sum_le_sum_of_rel_le /- _inst_1: ordered_add_comm_monoid ↝ add_comm_monoid covariant_class covariant_class preorder | |
-/ | |
-- data/mv_polynomial/basic.lean | |
#print mv_polynomial /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print mv_polynomial.alg_hom_ext /- _inst_3: comm_semiring ↝ semiring | |
-/ | |
-- data/mv_polynomial/comm_ring.lean | |
#print mv_polynomial.hom_C /- _inst_2: comm_ring ↝ ring | |
-/ | |
-- data/mv_polynomial/variables.lean | |
#print mv_polynomial.vars_C_mul /- _inst_2: integral_domain ↝ comm_semiring no_zero_divisors | |
-/ | |
-- data/nat/cast.lean | |
#print nat.cast_one /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print nat.commute_cast /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print add_monoid_hom.ext_nat /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print monoid_with_zero_hom.ext_nat /- _inst_1: monoid_with_zero ↝ mul_zero_one_class | |
-/ | |
-- data/nat/prime.lean | |
#print nat.monoid.prime_pow /- _inst_1: monoid ↝ has_pow | |
-/ | |
-- data/num/lemmas.lean | |
#print pos_num.cast_to_int /- _inst_1: add_group ↝ add_monoid has_neg | |
-/ | |
#print num.cast_to_int /- _inst_1: add_group ↝ add_monoid has_neg | |
-/ | |
#print pos_num.cast_mul /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print num.cast_add /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print num.cast_inj /- _inst_1: linear_ordered_semiring ↝ char_zero non_assoc_semiring | |
-/ | |
#print num.cast_of_znum /- _inst_1: add_group ↝ add_monoid | |
-/ | |
#print znum.cast_inj /- _inst_1: linear_ordered_ring ↝ char_zero ring | |
-/ | |
-- data/option/defs.lean | |
#print option.melim /- _inst_1: monad ↝ has_bind no_meet_fake_name | |
-/ | |
-- data/ordmap/ordnode.lean | |
#print ordnode.of_list /- _inst_2: decidable_rel ↝ has_insert | |
-/ | |
-- data/polynomial/algebra_map.lean | |
#print polynomial.alg_hom_eval₂_algebra_map /- _inst_4: comm_ring ↝ comm_semiring | |
_inst_5: ring ↝ semiring | |
_inst_6: ring ↝ semiring | |
-/ | |
#print polynomial.eval₂_algebra_map_X /- _inst_4: comm_ring ↝ algebra comm_semiring | |
_inst_5: ring ↝ semiring | |
-/ | |
#print polynomial.aeval_endomorphism /- _inst_1: comm_ring ↝ algebra algebra comm_semiring no_meet_fake_name | |
_inst_2: add_comm_group ↝ add_comm_monoid algebra has_scalar no_meet_fake_name | |
-/ | |
-- data/polynomial/basic.lean | |
#print polynomial.add_hom_ext /- _inst_2: add_monoid ↝ add_zero_class | |
-/ | |
-- data/polynomial/cancel_leads.lean | |
#print polynomial.cancel_leads /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- data/polynomial/degree/definitions.lean | |
#print polynomial.degree_X_add_C /- _inst_2: ring ↝ semiring | |
-/ | |
-- data/polynomial/denoms_clearable.lean | |
#print denoms_clearable /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
-- data/polynomial/derivative.lean | |
#print polynomial.of_mem_support_derivative /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print polynomial.derivative_cast_nat /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print polynomial.mem_support_derivative /- _inst_1: integral_domain ↝ no_zero_divisors semiring | |
-/ | |
#print polynomial.nat_degree_eq_zero_of_derivative_eq_zero /- _inst_1: integral_domain ↝ no_zero_divisors semiring | |
-/ | |
-- data/polynomial/eval.lean | |
#print polynomial.eval₂ /- _inst_2: semiring ↝ has_pow non_assoc_semiring | |
-/ | |
#print polynomial.eval₂_eq_sum_range /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
#print polynomial.eval₂_eq_sum_range' /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
#print polynomial.eval₂_comp /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print polynomial.support_map_subset /- _inst_1: comm_semiring ↝ semiring | |
_inst_2: comm_semiring ↝ semiring | |
-/ | |
#print polynomial.eval₂.is_ring_hom /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- data/polynomial/field_division.lean | |
#print polynomial.degree_pos_of_ne_zero_of_nonunit /- _inst_1: field ↝ division_ring | |
-/ | |
#print polynomial.monic_mul_leading_coeff_inv /- _inst_1: field ↝ division_ring no_zero_divisors | |
-/ | |
#print polynomial.degree_mul_leading_coeff_inv /- _inst_1: field ↝ division_ring no_zero_divisors | |
-/ | |
#print polynomial.div /- _inst_1: field ↝ has_inv ring | |
-/ | |
#print polynomial.mod /- _inst_1: field ↝ has_inv ring | |
-/ | |
#print polynomial.degree_map /- _inst_1: field ↝ division_ring | |
_inst_2: field ↝ domain | |
-/ | |
#print polynomial.map_eq_zero /- _inst_1: field ↝ division_ring | |
-/ | |
#print polynomial.mem_roots_map /- _inst_2: field ↝ integral_domain | |
-/ | |
#print polynomial.prod_multiset_root_eq_finset_root /- _inst_1: field ↝ integral_domain | |
-/ | |
#print polynomial.roots_C_mul /- _inst_1: field ↝ integral_domain | |
-/ | |
-- data/polynomial/integral_normalization.lean | |
#print polynomial.support_integral_normalization /- _inst_1: integral_domain ↝ domain no_zero_divisors | |
-/ | |
#print polynomial.integral_normalization_eval₂_eq_zero /- _inst_2: comm_ring ↝ comm_semiring | |
-/ | |
-- data/polynomial/lifts.lean | |
#print polynomial.map_alg /- _inst_6: algebra ↝ algebra | |
-/ | |
-- data/polynomial/monic.lean | |
#print polynomial.leading_coeff_of_injective /- _inst_1: ring ↝ semiring | |
-/ | |
-- data/polynomial/reverse.lean | |
#print polynomial.reverse_mul_of_domain /- _inst_2: domain ↝ no_zero_divisors semiring | |
-/ | |
#print polynomial.trailing_coeff_mul /- _inst_2: integral_domain ↝ domain | |
-/ | |
-- data/polynomial/ring_division.lean | |
#print polynomial.nat_degree_pos_of_aeval_root /- _inst_1: comm_ring ↝ algebra comm_semiring | |
_inst_2: comm_ring ↝ semiring | |
-/ | |
#print polynomial.no_zero_divisors /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print polynomial.root_mul /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print polynomial.degree_le_mul_left /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print polynomial.root_multiplicity_zero /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
#print polynomial.root_multiplicity_eq_zero /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
#print polynomial.root_multiplicity_pos /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
#print polynomial.root_set /- _inst_1: integral_domain ↝ comm_semiring | |
-/ | |
#print polynomial.monic.irreducible_of_irreducible_map /- _inst_1: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
#print is_integral_domain.polynomial /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- data/rat/cast.lean | |
#print rat.cast_coe /- _inst_1: division_ring ↝ has_add has_div has_neg mul_zero_one_class | |
-/ | |
-- data/real/cau_seq.lean | |
#print is_absolute_value.abv_inv /- _inst_4: field ↝ division_ring | |
-/ | |
#print is_absolute_value.abv_div /- _inst_4: field ↝ division_ring | |
-/ | |
#print is_cau_seq /- _inst_1: linear_ordered_field ↝ has_lt has_zero | |
_inst_2: ring ↝ has_sub | |
-/ | |
#print cau_seq.one_not_equiv_zero /- _inst_2: integral_domain ↝ domain | |
-/ | |
-- data/real/cau_seq_completion.lean | |
#print cau_seq.completion.Cauchy /- _inst_2: comm_ring ↝ ring | |
-/ | |
#print cau_seq.completion.cau_seq_zero_ne_one /- _inst_2: field ↝ domain | |
-/ | |
-- data/set/function.lean | |
#print strict_mono_incr_on.comp /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
_inst_3: preorder ↝ has_lt | |
-/ | |
#print strict_mono.comp_strict_mono_incr_on /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
_inst_3: preorder ↝ has_lt | |
-/ | |
#print strict_mono.cod_restrict /- _inst_1: preorder ↝ has_lt | |
-/ | |
-- data/set/intervals/basic.lean | |
#print set.Ioo /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print set.Ico /- _inst_1: preorder ↝ has_le has_lt | |
-/ | |
#print set.Iio /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print set.Icc /- _inst_1: preorder ↝ has_le | |
-/ | |
#print set.Iic /- _inst_1: preorder ↝ has_le | |
-/ | |
#print set.Ioc /- _inst_1: preorder ↝ has_le has_lt | |
-/ | |
#print set.Ici /- _inst_1: preorder ↝ has_le | |
-/ | |
#print set.Ioi /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print set.Icc_bot_top /- _inst_1: bounded_lattice ↝ nonempty_fin_lin_ord | |
-/ | |
#print set.Iic_inter_Ioc_of_le /- _inst_1: linear_order ↝ preorder | |
-/ | |
#print set.inv_mem_Icc_iff /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group preorder | |
-/ | |
#print set.neg_mem_Icc_iff /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.inv_mem_Ico_iff /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class covariant_class covariant_class group preorder | |
-/ | |
#print set.neg_mem_Ico_iff /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class covariant_class covariant_class preorder | |
-/ | |
#print set.neg_mem_Ioc_iff /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class covariant_class covariant_class preorder | |
-/ | |
#print set.inv_mem_Ioc_iff /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class covariant_class covariant_class group preorder | |
-/ | |
#print set.neg_mem_Ioo_iff /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.inv_mem_Ioo_iff /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group preorder | |
-/ | |
#print set.add_mem_Icc_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.add_mem_Ico_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.add_mem_Ioc_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.add_mem_Ioo_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.add_mem_Icc_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.add_mem_Ico_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class covariant_class preorder | |
-/ | |
#print set.add_mem_Ioc_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class covariant_class preorder | |
-/ | |
#print set.add_mem_Ioo_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.sub_mem_Icc_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.sub_mem_Ico_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.sub_mem_Ioc_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.sub_mem_Ioo_iff_left /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.sub_mem_Icc_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.sub_mem_Ico_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class covariant_class preorder | |
-/ | |
#print set.sub_mem_Ioc_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class covariant_class preorder | |
-/ | |
#print set.sub_mem_Ioo_iff_right /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.mem_Icc_iff_abs_le /- _inst_2: linear_ordered_add_comm_group ↝ add_comm_group covariant_class linear_order | |
-/ | |
#print set.nonempty_Ico_sdiff /- _inst_1: linear_ordered_add_comm_group ↝ add_zero_class contravariant_class contravariant_class contravariant_class covariant_class covariant_class covariant_class linear_order | |
-/ | |
-- data/set/intervals/image_preimage.lean | |
#print set.preimage_const_add_Ici /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_const_add_Ioi /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_const_add_Iic /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_const_add_Iio /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_add_const_Ici /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.preimage_add_const_Ioi /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.preimage_add_const_Iic /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.preimage_add_const_Iio /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class preorder | |
-/ | |
#print set.preimage_neg_Ici /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.preimage_neg_Iic /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.preimage_neg_Ioi /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.preimage_neg_Iio /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print set.preimage_const_sub_Ici /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_const_sub_Iic /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_const_sub_Ioi /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
#print set.preimage_const_sub_Iio /- _inst_1: ordered_add_comm_group ↝ add_comm_group covariant_class preorder | |
-/ | |
-- data/set/intervals/surj_on.lean | |
#print surj_on_Ioo_of_monotone_surjective /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print surj_on_Ioi_of_monotone_surjective /- _inst_2: partial_order ↝ preorder | |
-/ | |
-- data/set/intervals/unordered_interval.lean | |
#print set.abs_sub_le_of_subinterval /- _inst_1: linear_ordered_add_comm_group ↝ add_comm_group covariant_class covariant_class linear_order | |
-/ | |
-- data/set_like.lean | |
#print set_like.has_mem /- i: set_like ↝ has_coe_t | |
-/ | |
#print set_like.has_coe_to_sort /- i: set_like ↝ has_mem | |
-/ | |
#print set_like.coe_sort_coe /- i: set_like ↝ has_coe_t has_coe_to_sort | |
-/ | |
#print set_like.exists /- i: set_like ↝ has_coe_t has_coe_to_sort has_mem | |
-/ | |
#print set_like.forall /- i: set_like ↝ has_coe_t has_coe_to_sort has_mem | |
-/ | |
#print set_like.mem_coe /- i: set_like ↝ has_coe_t has_mem | |
-/ | |
#print set_like.coe_eq_coe /- i: set_like ↝ has_coe_to_sort has_mem | |
-/ | |
#print set_like.coe_mk /- i: set_like ↝ has_mem | |
-/ | |
#print set_like.coe_mem /- i: set_like ↝ has_coe_to_sort has_mem | |
-/ | |
#print set_like.eta /- i: set_like ↝ has_coe_to_sort has_mem | |
-/ | |
#print set_like.le_def /- i: set_like ↝ has_le has_mem | |
-/ | |
#print set_like.coe_subset_coe /- i: set_like ↝ has_coe_t has_le | |
-/ | |
#print set_like.coe_ssubset_coe /- i: set_like ↝ has_coe_t has_lt | |
-/ | |
#print set_like.not_le_iff_exists /- i: set_like ↝ has_coe_t has_le has_mem | |
-/ | |
#print set_like.exists_of_lt /- i: set_like ↝ has_coe_t has_lt has_mem | |
-/ | |
-- data/vector2.lean | |
#print vector.traverse_def /- _inst_3: is_lawful_applicative ↝ | |
-/ | |
-- data/zmod/basic.lean | |
#print zmod.nat_cast_comp_val /- _inst_1: ring ↝ has_add has_neg mul_zero_one_class | |
-/ | |
#print zmod.int_cast_comp_cast /- _inst_1: ring ↝ has_add has_neg mul_zero_one_class | |
-/ | |
#print zmod.cast_one /- _inst_1: ring ↝ has_neg non_assoc_semiring subsingleton | |
-/ | |
#print zmod.ring_hom_eq_of_ker_eq /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- deprecated/group.lean | |
#print is_add_hom.add /- _inst_4: add_semigroup ↝ has_add | |
-/ | |
#print is_mul_hom.mul /- _inst_4: semigroup ↝ has_mul | |
-/ | |
#print add_equiv.is_add_hom /- _inst_1: add_zero_class ↝ has_add | |
_inst_2: add_zero_class ↝ has_add | |
-/ | |
#print mul_equiv.is_mul_hom /- _inst_1: mul_one_class ↝ has_mul | |
_inst_2: mul_one_class ↝ has_mul | |
-/ | |
#print is_add_monoid_hom.map_add /- _inst_3: is_add_monoid_hom ↝ is_add_hom | |
-/ | |
#print is_monoid_hom.map_mul /- _inst_3: is_monoid_hom ↝ is_mul_hom | |
-/ | |
#print is_monoid_hom.of_mul /- _inst_2: group ↝ left_cancel_monoid | |
-/ | |
#print is_add_monoid_hom.of_add /- _inst_2: add_group ↝ add_left_cancel_monoid | |
-/ | |
#print is_group_hom.to_is_monoid_hom /- _inst_3: is_group_hom ↝ is_mul_hom | |
-/ | |
#print is_add_group_hom.to_is_add_monoid_hom /- _inst_3: is_add_group_hom ↝ is_add_hom | |
-/ | |
#print is_group_hom.map_one /- _inst_3: is_group_hom ↝ is_monoid_hom no_meet_fake_name | |
-/ | |
#print is_add_group_hom.map_zero /- _inst_3: is_add_group_hom ↝ is_add_monoid_hom no_meet_fake_name | |
-/ | |
#print is_group_hom.comp /- _inst_3: is_group_hom ↝ is_mul_hom | |
_inst_5: is_group_hom ↝ is_mul_hom | |
-/ | |
#print is_add_group_hom.comp /- _inst_3: is_add_group_hom ↝ is_add_hom | |
_inst_5: is_add_group_hom ↝ is_add_hom | |
-/ | |
#print is_add_group_hom.add /- _inst_5: add_comm_group ↝ add_group is_add_hom no_meet_fake_name | |
_inst_6: is_add_group_hom ↝ is_add_hom no_meet_fake_name | |
_inst_7: is_add_group_hom ↝ is_add_hom no_meet_fake_name | |
-/ | |
#print is_group_hom.mul /- _inst_5: comm_group ↝ group is_mul_hom no_meet_fake_name | |
_inst_6: is_group_hom ↝ is_mul_hom no_meet_fake_name | |
_inst_7: is_group_hom ↝ is_mul_hom no_meet_fake_name | |
-/ | |
#print is_group_hom.inv /- _inst_5: comm_group ↝ group is_mul_hom no_meet_fake_name | |
_inst_6: is_group_hom ↝ is_mul_hom no_meet_fake_name | |
-/ | |
#print is_add_group_hom.neg /- _inst_5: add_comm_group ↝ add_group is_add_hom no_meet_fake_name | |
_inst_6: is_add_group_hom ↝ is_add_hom no_meet_fake_name | |
-/ | |
#print is_add_group_hom.sub /- _inst_2: add_comm_group ↝ add_group is_add_group_hom is_add_group_hom no_meet_fake_name | |
_inst_4: is_add_group_hom ↝ is_add_group_hom no_meet_fake_name | |
-/ | |
#print additive.is_add_group_hom /- _inst_3: is_group_hom ↝ is_mul_hom | |
-/ | |
#print multiplicative.is_group_hom /- _inst_3: is_add_group_hom ↝ is_add_hom | |
-/ | |
-- deprecated/ring.lean | |
#print is_ring_hom.is_add_group_hom /- _inst_3: is_ring_hom ↝ is_add_hom | |
-/ | |
-- deprecated/subfield.lean | |
#print range.is_subfield /- _inst_1: field ↝ is_subfield is_subfield no_meet_fake_name non_assoc_semiring | |
-/ | |
#print field.closure /- _inst_1: field ↝ has_div ring | |
-/ | |
-- deprecated/subgroup.lean | |
#print gpowers /- _inst_1: group ↝ has_pow | |
-/ | |
#print gmultiples /- _inst_2: add_group ↝ sub_neg_monoid | |
-/ | |
#print is_subgroup.trivial /- _inst_2: group ↝ has_one | |
-/ | |
#print is_add_subgroup.trivial /- _inst_2: add_group ↝ has_zero | |
-/ | |
#print is_subgroup.eq_trivial_iff /- _inst_2: is_subgroup ↝ is_submonoid | |
-/ | |
#print is_add_subgroup.eq_trivial_iff /- _inst_2: is_add_subgroup ↝ is_add_submonoid | |
-/ | |
#print is_subgroup.center /- _inst_2: group ↝ has_mul | |
-/ | |
#print is_add_subgroup.add_center /- _inst_2: add_group ↝ has_add | |
-/ | |
#print is_subgroup.normalizer /- _inst_1: group ↝ has_inv has_mul | |
-/ | |
#print is_add_subgroup.add_normalizer /- _inst_1: add_group ↝ has_add has_neg | |
-/ | |
#print is_group_hom.range_subgroup /- _inst_3: is_group_hom ↝ is_subgroup no_meet_fake_name | |
-/ | |
#print is_add_group_hom.range_add_subgroup /- _inst_3: is_add_group_hom ↝ is_add_subgroup no_meet_fake_name | |
-/ | |
#print is_group_hom.normal_subgroup_ker /- _inst_3: is_group_hom ↝ no_meet_fake_name normal_subgroup | |
-/ | |
#print is_add_group_hom.normal_add_subgroup_ker /- _inst_3: is_add_group_hom ↝ no_meet_fake_name normal_add_subgroup | |
-/ | |
#print subtype_mk.is_add_group_hom /- _inst_4: is_add_group_hom ↝ is_add_monoid_hom no_meet_fake_name | |
-/ | |
#print subtype_mk.is_group_hom /- _inst_4: is_group_hom ↝ is_monoid_hom no_meet_fake_name | |
-/ | |
-- deprecated/submonoid.lean | |
#print powers /- _inst_1: monoid ↝ has_pow | |
-/ | |
#print range.is_add_submonoid /- _inst_1: add_monoid ↝ add_zero_class is_add_submonoid is_add_submonoid no_meet_fake_name | |
_inst_4: is_add_monoid_hom ↝ is_add_submonoid no_meet_fake_name | |
-/ | |
#print range.is_submonoid /- _inst_1: monoid ↝ is_submonoid is_submonoid mul_one_class no_meet_fake_name | |
_inst_4: is_monoid_hom ↝ is_submonoid no_meet_fake_name | |
-/ | |
#print subtype_mk.is_add_monoid_hom /- _inst_3: add_monoid ↝ add_zero_class | |
-/ | |
#print subtype_mk.is_monoid_hom /- _inst_3: monoid ↝ mul_one_class | |
-/ | |
-- deprecated/subring.lean | |
#print ring_hom.is_subring_preimage /- _inst_4: is_subring ↝ is_add_subgroup is_submonoid | |
-/ | |
#print ring_hom.is_subring_image /- _inst_4: is_subring ↝ is_add_subgroup is_submonoid | |
-/ | |
#print ring_hom.is_subring_set_range /- _inst_2: ring ↝ is_add_group_hom is_add_subgroup is_monoid_hom is_submonoid no_meet_fake_name non_assoc_semiring | |
-/ | |
#print is_subring.inter /- _inst_3: is_subring ↝ is_add_subgroup is_submonoid no_meet_fake_name | |
_inst_4: is_subring ↝ is_add_subgroup is_submonoid no_meet_fake_name | |
-/ | |
#print ring.closure_subset /- _inst_3: is_subring ↝ is_add_subgroup is_submonoid | |
-/ | |
#print ring.closure_subset_iff /- _inst_3: is_subring ↝ is_add_subgroup is_submonoid | |
-/ | |
-- dynamics/flow.lean | |
#print is_fw_invariant /- _inst_1: preorder ↝ has_le | |
-/ | |
#print flow.is_invariant_iff_image_eq /- _inst_1: add_comm_group ↝ add_group has_continuous_add | |
_inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
-- dynamics/omega_limit.lean | |
#print flow.omega_limit_image_eq /- _inst_2: add_comm_group ↝ add_group has_continuous_add | |
_inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print flow.omega_limit_omega_limit /- _inst_2: add_comm_group ↝ add_group has_continuous_add | |
_inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
-- field_theory/adjoin.lean | |
#print intermediate_field.lifts /- _inst_3: field ↝ semiring | |
-/ | |
-- field_theory/algebraic_closure.lean | |
#print algebraic_closure.monic_irreducible /- _inst_1: field ↝ ring | |
-/ | |
-- field_theory/finite/basic.lean | |
#print finite_field.card_units /- _inst_1: field ↝ division_ring | |
-/ | |
#print finite_field.prod_univ_units_id_eq_neg_one /- _inst_1: field ↝ integral_domain | |
-/ | |
#print finite_field.card /- _inst_1: field ↝ domain no_zero_divisors | |
-/ | |
#print char_p.sq_add_sq /- _inst_4: integral_domain ↝ domain no_zero_divisors | |
-/ | |
-- field_theory/finite/polynomial.lean | |
#print mv_polynomial.indicator /- _inst_1: field ↝ integral_domain | |
-/ | |
#print mv_polynomial.evalₗ /- _inst_2: fintype ↝ | |
_inst_3: fintype ↝ | |
-/ | |
#print mv_polynomial.R /- _inst_1: fintype ↝ | |
_inst_2: field ↝ comm_ring module | |
-/ | |
-- field_theory/fixed.lean | |
#print fixed_by.is_subfield /- _inst_1: group ↝ distrib_mul_action monoid | |
-/ | |
#print fixed_points.mul_action.fixed_points.is_subfield /- _inst_1: group ↝ is_subfield monoid no_meet_fake_name | |
_inst_3: mul_semiring_action ↝ is_subfield mul_action no_meet_fake_name | |
-/ | |
#print fixed_points.mul_action.fixed_points.is_invariant_subring /- _inst_1: group ↝ is_subfield monoid no_meet_fake_name | |
_inst_2: field ↝ is_subfield is_subring no_meet_fake_name ring | |
-/ | |
#print fixed_points.smul /- _inst_1: group ↝ distrib_mul_action is_invariant_subring is_subfield monoid mul_semiring_action no_meet_fake_name | |
_inst_2: field ↝ is_invariant_subring is_subfield is_subring mul_semiring_action no_meet_fake_name ring | |
_inst_3: mul_semiring_action ↝ is_invariant_subring is_subfield mul_action mul_semiring_action no_meet_fake_name | |
-/ | |
#print linear_independent_to_linear_map /- _inst_5: integral_domain ↝ module module no_meet_fake_name semiring | |
_inst_7: integral_domain ↝ comm_ring module module no_meet_fake_name no_zero_divisors | |
-/ | |
#print cardinal_mk_alg_hom /- _inst_5: field ↝ finite_dimensional integral_domain module module no_meet_fake_name | |
_inst_7: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
_inst_10: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
-- field_theory/galois.lean | |
#print is_galois.integral /- _inst_4: is_galois ↝ normal | |
-/ | |
#print is_galois.splits /- _inst_4: is_galois ↝ normal | |
-/ | |
#print is_galois.tower_top_of_is_galois /- _inst_10: is_galois ↝ is_separable no_meet_fake_name normal | |
-/ | |
#print is_galois.of_alg_equiv /- h: is_galois ↝ is_separable no_meet_fake_name normal | |
-/ | |
-- field_theory/intermediate_field.lean | |
#print intermediate_field.finite_dimensional_left /- _inst_6: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print intermediate_field.eq_of_le_of_finrank_le /- _inst_6: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
-- field_theory/minpoly.lean | |
#print minpoly.nat_degree_pos /- _inst_1: integral_domain ↝ algebra comm_ring | |
-/ | |
#print minpoly.aeval_ne_zero_of_dvd_not_unit_minpoly /- _inst_2: domain ↝ ring | |
-/ | |
#print minpoly.dvd_map_of_is_scalar_tower /- _inst_6: comm_ring ↝ ring | |
-/ | |
#print minpoly.gcd_domain_eq_field_fractions /- _inst_7: integral_domain ↝ domain | |
-/ | |
#print minpoly.root /- _inst_1: field ↝ algebra integral_domain | |
-/ | |
-- field_theory/perfect_closure.lean | |
#print perfect_closure.eq_iff /- _inst_1: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
-- field_theory/primitive_element.lean | |
#print field.primitive_element_inf_aux_exists_c /- _inst_1: field ↝ division_ring | |
_inst_3: field ↝ has_div integral_domain | |
-/ | |
-- field_theory/separable.lean | |
#print polynomial.contract /- _inst_1: field ↝ ring | |
-/ | |
#print polynomial.of_irreducible_expand /- _inst_1: field ↝ algebra integral_domain | |
-/ | |
#print polynomial.expand_char /- _inst_1: field ↝ algebra comm_ring | |
-/ | |
#print polynomial.is_unit_or_eq_zero_of_separable_expand /- _inst_1: field ↝ algebra integral_domain | |
-/ | |
#print polynomial.not_unit_X_sub_C /- _inst_1: field ↝ integral_domain | |
-/ | |
#print polynomial.multiplicity_le_one_of_separable /- _inst_1: field ↝ comm_ring | |
-/ | |
-- field_theory/splitting_field.lean | |
#print polynomial.splits /- _inst_1: field ↝ semiring | |
_inst_2: field ↝ ring | |
-/ | |
#print polynomial.roots_map /- _inst_2: field ↝ integral_domain | |
-/ | |
#print lift_of_splits /- _inst_3: field ↝ algebra integral_domain is_scalar_tower module module no_meet_fake_name | |
-/ | |
#print polynomial.factor /- _inst_1: field ↝ ring | |
-/ | |
-- field_theory/subfield.lean | |
#print ring_hom.restrict_field /- _inst_2: field ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.eq_of_eq_on_subfield_top /- _inst_2: field ↝ non_assoc_semiring | |
-/ | |
-- field_theory/tower.lean | |
#print dim_mul_dim' /- _inst_2: field ↝ division_ring module | |
-/ | |
#print finite_dimensional.right /- _inst_4: algebra ↝ has_scalar | |
-/ | |
#print finite_dimensional.linear_map' /- _inst_11: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
_inst_14: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
-- geometry/euclidean/basic.lean | |
#print euclidean_geometry.cospherical /- _inst_2: metric_space ↝ has_dist | |
-/ | |
-- geometry/manifold/algebra/monoid.lean | |
#print smooth_left_mul_one /- _inst_14: monoid ↝ mul_one_class | |
-/ | |
#print smooth_right_mul_one /- _inst_14: monoid ↝ mul_one_class | |
-/ | |
-- geometry/manifold/algebra/smooth_functions.lean | |
#print smooth_map.has_zero /- _inst_15: add_monoid ↝ has_zero | |
-/ | |
#print smooth_map.has_one /- _inst_15: monoid ↝ has_one | |
-/ | |
-- geometry/manifold/algebra/structures.lean | |
#print topological_semiring_of_smooth /- _inst_8: smooth_semiring ↝ has_smooth_add has_smooth_mul no_meet_fake_name | |
-/ | |
#print topological_ring_of_smooth /- _inst_8: smooth_ring ↝ has_smooth_mul lie_add_group no_meet_fake_name | |
-/ | |
-- geometry/manifold/basic_smooth_bundle.lean | |
#print tangent_space /- _inst_7: smooth_manifold_with_corners ↝ | |
-/ | |
-- geometry/manifold/diffeomorph.lean | |
#print diffeomorph.smooth_manifold_with_corners_trans_diffeomorph /- _inst_17: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
-- geometry/manifold/instances/units_of_normed_algebra.lean | |
#print units.chart_at_apply /- _inst_1: normed_ring ↝ charted_space monoid uniform_space | |
_inst_2: complete_space ↝ charted_space | |
-/ | |
#print units.chart_at_source /- _inst_1: normed_ring ↝ charted_space monoid uniform_space | |
_inst_2: complete_space ↝ charted_space | |
-/ | |
#print units.smooth_manifold_with_corners /- _inst_4: normed_algebra ↝ no_meet_fake_name normed_space | |
-/ | |
-- geometry/manifold/mfderiv.lean | |
#print mdifferentiable_at_atlas /- _inst_7: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print mdifferentiable_at_atlas_symm /- _inst_7: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
-- geometry/manifold/smooth_manifold_with_corners.lean | |
#print smooth_manifold_with_corners.mem_maximal_atlas_of_mem_atlas /- _inst_7: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print smooth_manifold_with_corners.chart_mem_maximal_atlas /- _inst_7: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print smooth_manifold_with_corners.prod /- _inst_16: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
_inst_19: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print topological_space.opens.smooth_manifold_with_corners /- _inst_7: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
-- geometry/manifold/times_cont_mdiff.lean | |
#print times_cont_mdiff_within_at_iff' /- Is: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
I's: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print times_cont_mdiff_on_iff /- Is: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
I's: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print times_cont_mdiff_within_at_iff_times_cont_mdiff_on_nhds /- Is: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
I's: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print times_cont_mdiff_on_of_mem_maximal_atlas /- Is: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
#print times_cont_mdiff_on_symm_of_mem_maximal_atlas /- Is: smooth_manifold_with_corners ↝ has_groupoid no_meet_fake_name | |
-/ | |
-- group_theory/abelianization.lean | |
#print abelianization.hom_ext /- _inst_2: monoid ↝ mul_one_class | |
-/ | |
-- group_theory/congruence.lean | |
#print con.quotient.inhabited /- _inst_1: mul_one_class ↝ has_coe_t has_mul has_one no_meet_fake_name | |
-/ | |
#print add_con.quotient.inhabited /- _inst_1: add_zero_class ↝ has_add has_coe_t has_zero no_meet_fake_name | |
-/ | |
-- group_theory/coset.lean | |
#print one_left_coset /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print zero_left_add_coset /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print right_coset_one /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print right_add_coset_zero /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print mem_own_left_add_coset /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print mem_own_left_coset /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print mem_own_right_add_coset /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
#print mem_own_right_coset /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print subgroup.card_eq_card_quotient_mul_card_subgroup /- _inst_4: decidable_pred ↝ decidable_rel no_meet_fake_name | |
-/ | |
-- group_theory/eckmann_hilton.lean | |
#print eckmann_hilton.mul_one_class.is_unital /- G: mul_one_class ↝ has_mul has_one is_left_id is_right_id | |
-/ | |
#print eckmann_hilton.add_zero_class.is_unital /- G: add_zero_class ↝ has_add has_zero is_left_id is_right_id | |
-/ | |
-- group_theory/finiteness.lean | |
#print submonoid.fg /- _inst_1: monoid ↝ mul_one_class | |
-/ | |
#print add_submonoid.fg /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
-- group_theory/free_group.lean | |
#print free_group.lift.aux /- _inst_1: group ↝ has_inv has_mul has_one | |
-/ | |
-- group_theory/group_action/basic.lean | |
#print mul_action.orbit /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
#print mul_action.fixed_points /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
#print mul_action.fixed_by /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
-- group_theory/group_action/defs.lean | |
#print ite_vadd /- _inst_2: add_action ↝ has_vadd | |
-/ | |
#print ite_smul /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
#print vadd_ite /- _inst_2: add_action ↝ has_vadd | |
-/ | |
#print smul_ite /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
#print mul_smul_comm /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
#print add_vadd_comm /- _inst_2: add_action ↝ has_vadd | |
-/ | |
#print smul_mul_assoc /- _inst_2: mul_action ↝ has_scalar | |
-/ | |
-- group_theory/group_action/sub_mul_action.lean | |
#print sub_mul_action.smul_of_tower_mem /- _inst_5: mul_action ↝ has_scalar | |
-/ | |
#print sub_mul_action.is_scalar_tower /- _inst_3: mul_action ↝ has_scalar has_scalar no_meet_fake_name | |
_inst_5: mul_action ↝ has_scalar has_scalar no_meet_fake_name | |
-/ | |
#print sub_mul_action.coe_smul_of_tower /- _inst_3: mul_action ↝ has_scalar has_scalar no_meet_fake_name | |
_inst_5: mul_action ↝ has_scalar has_scalar no_meet_fake_name | |
_inst_6: is_scalar_tower ↝ has_scalar no_meet_fake_name | |
-/ | |
#print sub_mul_action.mul_action /- _inst_3: mul_action ↝ has_scalar mul_action no_meet_fake_name | |
-/ | |
#print sub_mul_action.zero_mem /- _inst_3: module ↝ has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
#print sub_mul_action.smul_mem_iff /- _inst_1: division_ring ↝ group_with_zero | |
_inst_2: semiring ↝ monoid | |
-/ | |
-- group_theory/group_action/units.lean | |
#print units.coe_smul /- _inst_1: group ↝ monoid mul_action | |
_inst_3: mul_action ↝ has_scalar mul_action | |
_inst_4: smul_comm_class ↝ mul_action | |
_inst_5: is_scalar_tower ↝ mul_action | |
-/ | |
#print units.smul_inv /- _inst_1: group ↝ has_inv monoid mul_action | |
_inst_3: mul_action ↝ has_scalar mul_action | |
_inst_4: smul_comm_class ↝ mul_action | |
_inst_5: is_scalar_tower ↝ mul_action | |
-/ | |
#print units.smul_comm_class' /- _inst_1: group ↝ monoid mul_action | |
_inst_2: group ↝ monoid mul_action | |
_inst_4: mul_action ↝ has_scalar mul_action | |
_inst_5: smul_comm_class ↝ mul_action | |
_inst_6: mul_action ↝ has_scalar mul_action | |
_inst_7: smul_comm_class ↝ mul_action | |
_inst_8: is_scalar_tower ↝ mul_action | |
_inst_9: is_scalar_tower ↝ mul_action | |
-/ | |
#print units.is_scalar_tower' /- _inst_2: group ↝ monoid mul_action | |
_inst_3: group ↝ monoid mul_action | |
_inst_5: mul_action ↝ has_scalar mul_action | |
_inst_6: smul_comm_class ↝ mul_action | |
_inst_7: mul_action ↝ has_scalar mul_action | |
_inst_8: smul_comm_class ↝ mul_action | |
_inst_9: is_scalar_tower ↝ mul_action | |
_inst_10: is_scalar_tower ↝ mul_action | |
-/ | |
#print units.is_scalar_tower'_left /- _inst_1: group ↝ monoid mul_action | |
_inst_3: mul_action ↝ has_scalar mul_action | |
_inst_6: smul_comm_class ↝ mul_action | |
_inst_7: is_scalar_tower ↝ mul_action | |
-/ | |
-- group_theory/monoid_localization.lean | |
#print localization.r /- _inst_1: comm_monoid ↝ mul_one_class | |
-/ | |
#print add_localization.r /- _inst_1: add_comm_monoid ↝ add_zero_class | |
-/ | |
#print submonoid.localization_map.mul_inv_left /- _inst_1: comm_monoid ↝ monoid | |
-/ | |
#print add_submonoid.localization_map.add_neg_left /- _inst_1: add_comm_monoid ↝ add_monoid | |
-/ | |
#print submonoid.localization_map.is_unit_comp /- _inst_3: comm_monoid ↝ monoid | |
-/ | |
#print add_submonoid.localization_map.is_unit_comp /- _inst_3: add_comm_monoid ↝ add_monoid | |
-/ | |
-- group_theory/nielsen_schreier.lean | |
#print is_free_groupoid.generators /- _inst_1: category_theory.groupoid ↝ | |
-/ | |
-- group_theory/order_of_element.lean | |
#print is_of_fin_add_order /- _inst_2: add_monoid ↝ has_add has_zero | |
-/ | |
#print is_of_fin_order /- _inst_1: monoid ↝ has_mul has_one | |
-/ | |
#print add_order_of /- _inst_2: add_monoid ↝ has_add has_zero | |
-/ | |
#print order_of /- _inst_1: monoid ↝ has_mul has_one | |
-/ | |
#print order_eq_card_powers /- _inst_5: decidable_eq ↝ decidable_pred | |
-/ | |
#print add_order_of_eq_card_multiples /- _inst_5: decidable_eq ↝ decidable_pred | |
-/ | |
#print decidable_gmultiples /- _inst_5: decidable_eq ↝ decidable_pred | |
-/ | |
#print decidable_gpowers /- _inst_5: decidable_eq ↝ decidable_pred | |
-/ | |
#print order_eq_card_gpowers /- _inst_5: decidable_eq ↝ decidable_pred | |
-/ | |
#print add_order_eq_card_gmultiples /- _inst_5: decidable_eq ↝ decidable_pred | |
-/ | |
-- group_theory/perm/cycles.lean | |
#print equiv.perm.cycle_of /- _inst_1: decidable_eq ↝ decidable_rel no_meet_fake_name | |
_inst_2: fintype ↝ decidable_rel no_meet_fake_name | |
-/ | |
-- group_theory/solvable.lean | |
#print general_commutator_def' /- _inst_3: subgroup.normal ↝ no_meet_fake_name subgroup.normal | |
_inst_4: subgroup.normal ↝ no_meet_fake_name subgroup.normal | |
-/ | |
-- group_theory/specific_groups/cyclic.lean | |
#print is_simple_group.prime_card /- _inst_1: comm_group ↝ is_cyclic no_meet_fake_name | |
-/ | |
-- group_theory/subgroup.lean | |
#print group.conjugates_of_set /- _inst_1: group ↝ monoid | |
-/ | |
#print monoid_hom.restrict /- _inst_3: group ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.restrict /- _inst_3: add_group ↝ add_zero_class | |
-/ | |
#print monoid_hom.eq_of_eq_on_top /- _inst_3: group ↝ mul_one_class | |
-/ | |
#print add_monoid_hom.eq_of_eq_on_top /- _inst_3: add_group ↝ add_zero_class | |
-/ | |
#print is_simple_add_group.subgroup.is_simple_lattice /- _inst_4: add_comm_group ↝ add_subgroup.normal domain no_meet_fake_name | |
-/ | |
#print is_simple_group.subgroup.is_simple_lattice /- _inst_4: comm_group ↝ no_meet_fake_name subgroup.normal | |
-/ | |
#print add_subgroup.vadd_comm_class_right /- _inst_6: vadd_comm_class ↝ no_meet_fake_name vadd_comm_class | |
-/ | |
#print subgroup.smul_comm_class_right /- _inst_6: smul_comm_class ↝ no_meet_fake_name smul_comm_class | |
-/ | |
-- group_theory/sylow.lean | |
#print mul_action.mem_fixed_points_iff_card_orbit_eq_one /- _inst_1: group ↝ monoid | |
-/ | |
#print sylow.mk_vector_prod_eq_one /- _inst_1: group ↝ has_inv has_mul has_one | |
-/ | |
#print sylow.vectors_prod_eq_one /- _inst_2: group ↝ has_mul has_one | |
-/ | |
-- linear_algebra/adic_completion.lean | |
#print is_adic_complete.of_subsingleton /- _inst_6: subsingleton ↝ is_Hausdorff is_precomplete | |
-/ | |
-- linear_algebra/affine_space/affine_map.lean | |
#print affine_map.coe_smul /- _inst_1: comm_ring ↝ module ring | |
-/ | |
#print affine_map.homothety /- _inst_1: comm_ring ↝ module ring | |
-/ | |
-- linear_algebra/affine_space/affine_subspace.lean | |
#print vector_span /- _inst_1: ring ↝ semiring | |
-/ | |
-- linear_algebra/affine_space/combination.lean | |
#print finset.weighted_vsub_of_point /- S: add_torsor ↝ has_vsub | |
-/ | |
#print finset.centroid_weights /- _inst_1: division_ring ↝ has_add has_inv mul_zero_one_class | |
-/ | |
-- linear_algebra/affine_space/finite_dimensional.lean | |
#print affine_span_eq_top_of_affine_independent_of_card_eq_finrank_add_one /- _inst_5: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print collinear /- _inst_1: field ↝ module no_meet_fake_name ring | |
-/ | |
-- linear_algebra/affine_space/independent.lean | |
#print exists_subset_affine_independent_affine_span_eq_top /- _inst_1: field ↝ division_ring | |
-/ | |
#print affine_independent_of_ne /- _inst_1: field ↝ domain no_zero_smul_divisors | |
-/ | |
-- linear_algebra/affine_space/midpoint.lean | |
#print line_map_inv_two /- _inst_1: division_ring ↝ has_inv invertible ring | |
_inst_2: char_zero ↝ invertible | |
-/ | |
#print homothety_inv_two /- _inst_1: field ↝ comm_ring has_inv invertible | |
_inst_2: char_zero ↝ invertible | |
-/ | |
#print pi_midpoint_apply /- _inst_1: field ↝ module no_meet_fake_name ring | |
-/ | |
-- linear_algebra/affine_space/ordered.lean | |
#print slope /- _inst_1: field ↝ has_inv has_sub semiring | |
_inst_3: module ↝ has_scalar | |
_inst_4: add_torsor ↝ has_vsub | |
-/ | |
-- linear_algebra/alternating.lean | |
#print alternating_map.smul_apply /- _inst_12: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_13: smul_comm_class ↝ has_scalar | |
-/ | |
#print alternating_map.map_linear_dependent /- _inst_11: ring ↝ distrib_mul_action semiring | |
-/ | |
-- linear_algebra/basic.lean | |
#print pi_eq_sum_univ /- _inst_2: semiring ↝ non_assoc_semiring | |
-/ | |
#print linear_map.sub_comp /- _inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_map.smul_apply /- _inst_9: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_10: smul_comm_class ↝ has_scalar | |
-/ | |
#print linear_map.smul_comm_class /- _inst_9: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_10: smul_comm_class ↝ has_scalar | |
_inst_12: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_13: smul_comm_class ↝ has_scalar | |
-/ | |
#print linear_map.is_scalar_tower /- _inst_9: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_10: smul_comm_class ↝ has_scalar | |
_inst_13: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_14: smul_comm_class ↝ has_scalar | |
-/ | |
#print linear_map.smul_comp /- _inst_9: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_10: smul_comm_class ↝ has_scalar | |
-/ | |
#print linear_map.comp_smul /- _inst_1: comm_semiring ↝ distrib_mul_action has_scalar no_meet_fake_name semiring smul_comm_class | |
-/ | |
#print submodule.span_singleton_smul_eq /- _inst_9: add_comm_group ↝ add_comm_monoid has_scalar mul_action | |
-/ | |
#print submodule.disjoint_span_singleton /- _inst_9: add_comm_group ↝ add_comm_monoid distrib_mul_action has_scalar is_scalar_tower no_meet_fake_name smul_with_zero | |
-/ | |
#print submodule.quot_hom_ext /- _inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print submodule.comap_smul /- _inst_1: field ↝ distrib_mul_action division_ring has_scalar no_meet_fake_name smul_comm_class | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_4: add_comm_group ↝ add_comm_monoid distrib_mul_action has_scalar has_scalar is_scalar_tower no_meet_fake_name smul_comm_class | |
-/ | |
#print linear_map.sub_mem_ker_iff /- _inst_1: ring ↝ semiring | |
-/ | |
#print linear_map.ker_le_iff /- _inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_map.span_singleton_sup_ker_eq_top /- _inst_1: field ↝ division_ring | |
-/ | |
#print linear_equiv.ker_to_span_singleton /- _inst_1: field ↝ distrib_mul_action division_ring mul_action | |
_inst_2: add_comm_group ↝ add_comm_monoid distrib_mul_action has_scalar mul_action | |
-/ | |
#print submodule.mem_map_equiv /- _inst_1: comm_ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
_inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print submodule.comap_le_comap_smul /- _inst_1: comm_ring ↝ has_scalar semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_3: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
-/ | |
#print submodule.inf_comap_le_comap_add /- _inst_1: comm_ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
_inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- linear_algebra/basis.lean | |
#print basis.no_zero_smul_divisors /- _inst_6: no_zero_divisors ↝ no_zero_smul_divisors | |
-/ | |
#print basis.group_smul_span_eq_top /- _inst_1: ring ↝ mul_action semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid mul_action mul_action | |
_inst_9: distrib_mul_action ↝ has_scalar | |
_inst_10: distrib_mul_action ↝ mul_action | |
-/ | |
#print linear_map.exists_left_inverse_of_injective /- _inst_1: field ↝ division_ring module no_meet_fake_name smul_comm_class | |
-/ | |
#print linear_map.exists_right_inverse_of_surjective /- _inst_1: field ↝ division_ring module no_meet_fake_name smul_comm_class | |
_inst_2: add_comm_group ↝ add_comm_monoid module no_meet_fake_name smul_comm_class | |
-/ | |
#print linear_map.exists_extend /- _inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- linear_algebra/bilinear_form.lean | |
#print bilin_form.smul_apply /- _inst_16: algebra ↝ has_scalar module | |
-/ | |
#print bilin_form.ne_zero_of_not_is_ortho_self /- _inst_13: field ↝ semiring | |
_inst_14: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print bilin_form.is_ortho_smul_left /- _inst_18: domain ↝ no_zero_divisors semiring | |
_inst_19: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print bilin_form.is_ortho_smul_right /- _inst_18: domain ↝ no_zero_divisors semiring | |
_inst_19: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print bilin_form.linear_independent_of_is_Ortho /- _inst_13: field ↝ no_zero_divisors semiring | |
_inst_14: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print bilin_form.ext_basis /- _inst_10: comm_ring ↝ comm_semiring module module no_meet_fake_name | |
_inst_11: add_comm_group ↝ add_comm_monoid module module no_meet_fake_name | |
-/ | |
#print bilin_form.sum_repr_mul_repr_mul /- _inst_10: comm_ring ↝ module no_meet_fake_name semiring | |
_inst_11: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print bilin_form.to_matrix /- _inst_11: add_comm_group ↝ add_comm_monoid module | |
-/ | |
#print basis.equiv_fun_symm_std_basis /- _inst_11: add_comm_group ↝ add_comm_monoid has_scalar mul_action no_meet_fake_name smul_with_zero | |
-/ | |
#print alt_bilin_form.neg /- _inst_5: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print bilin_form.is_adjoint_pair.smul /- _inst_7: comm_semiring ↝ distrib_mul_action has_scalar no_meet_fake_name semiring smul_comm_class | |
-/ | |
#print bilin_form.is_skew_adjoint /- _inst_4: ring ↝ semiring | |
-/ | |
#print matrix.is_adjoint_pair /- _inst_10: comm_ring ↝ add_comm_monoid has_mul | |
-/ | |
#print bilin_form.span_singleton_inf_orthogonal_eq_bot /- _inst_13: field ↝ no_meet_fake_name no_zero_divisors semiring smul_with_zero | |
_inst_14: add_comm_group ↝ add_comm_monoid has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
#print bilin_form.orthogonal_span_singleton_eq_to_lin_ker /- _inst_13: field ↝ comm_semiring module module mul_action no_meet_fake_name no_zero_divisors | |
_inst_14: add_comm_group ↝ add_comm_monoid has_scalar module module mul_action no_meet_fake_name | |
-/ | |
#print bilin_form.nondegenerate_restrict_of_disjoint_orthogonal /- _inst_4: ring ↝ module no_meet_fake_name semiring | |
_inst_5: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
-- linear_algebra/char_poly/basic.lean | |
#print char_matrix /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- linear_algebra/char_poly/coeff.lean | |
#print mat_poly_equiv_eq_X_pow_sub_C /- _inst_6: field ↝ algebra algebra comm_ring | |
-/ | |
-- linear_algebra/dimension.lean | |
#print dim_of_field /- _inst_8: field ↝ division_ring | |
-/ | |
#print dim_range_of_surjective /- _inst_1: field ↝ division_ring module no_meet_fake_name | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print dim_pi /- _inst_1: field ↝ division_ring module no_meet_fake_name | |
-/ | |
#print exists_mem_ne_zero_of_ne_bot /- _inst_1: field ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print rank /- _inst_1: field ↝ module no_meet_fake_name semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
_inst_6: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
#print dim_zero_iff_forall_zero /- _inst_1: field ↝ division_ring module no_meet_fake_name | |
-/ | |
#print le_dim_iff_exists_linear_independent /- _inst_1: field ↝ division_ring | |
-/ | |
#print dim_le_one_iff /- _inst_1: field ↝ distrib_mul_action division_ring module no_meet_fake_name | |
-/ | |
-- linear_algebra/direct_sum/finsupp.lean | |
#print finsupp_lequiv_direct_sum /- _inst_1: ring ↝ module module no_meet_fake_name semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
-- linear_algebra/dual.lean | |
#print module.dual /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print basis.eval_ker /- _inst_1: comm_ring ↝ comm_semiring module no_meet_fake_name | |
_inst_2: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
#print dual_pair.lc /- _inst_1: comm_ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_3: module ↝ has_scalar | |
-/ | |
#print submodule.dual_restrict /- _inst_1: comm_ring ↝ comm_semiring module module no_meet_fake_name | |
_inst_2: add_comm_group ↝ add_comm_monoid module module no_meet_fake_name | |
-/ | |
#print subspace.quot_dual_equiv_annihilator /- _inst_6: finite_dimensional ↝ finite_dimensional | |
-/ | |
#print linear_map.dual_map /- _inst_1: comm_ring ↝ comm_semiring module no_meet_fake_name | |
_inst_2: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
_inst_4: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
-- linear_algebra/eigenspace.lean | |
#print module.End.eigenspace /- _inst_1: comm_ring ↝ algebra comm_semiring no_meet_fake_name | |
-/ | |
#print module.End.aeval_apply_of_has_eigenvector /- _inst_4: field ↝ algebra algebra comm_ring mul_action no_meet_fake_name | |
-/ | |
#print module.End.is_integral /- _inst_7: finite_dimensional ↝ finite_dimensional | |
-/ | |
#print module.End.eigenvectors_linear_independent /- _inst_4: field ↝ algebra comm_ring distrib_mul_action mul_action no_meet_fake_name no_zero_divisors no_zero_smul_divisors smul_with_zero | |
-/ | |
#print module.End.generalized_eigenrange /- _inst_1: comm_ring ↝ algebra comm_semiring no_meet_fake_name | |
-/ | |
#print module.End.map_generalized_eigenrange_le /- _inst_4: field ↝ algebra comm_ring no_meet_fake_name | |
-/ | |
-- linear_algebra/finite_dimensional.lean | |
#print finite_dimensional /- _inst_6: field ↝ semiring | |
_inst_7: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print finite_dimensional.finrank /- _inst_6: field ↝ semiring | |
_inst_7: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print finite_dimensional.dim_eq_card_basis /- _inst_1: field ↝ division_ring | |
-/ | |
#print finite_dimensional.basis.subset_extend /- _inst_1: field ↝ division_ring | |
-/ | |
#print finite_dimensional.finrank_map_subtype_eq /- _inst_6: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print linear_map.finite_dimensional_range /- h: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print alg_hom.bijective /- _inst_7: field ↝ division_ring module | |
-/ | |
#print submodule.finrank_mono /- _inst_6: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print submodule.finrank_lt_finrank_of_lt /- _inst_6: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print submodule.finrank_add_eq_of_is_compl /- _inst_6: finite_dimensional ↝ finite_dimensional no_meet_fake_name | |
-/ | |
#print subalgebra.dim_eq_one_of_eq_bot /- _inst_7: field ↝ algebra domain module module module no_meet_fake_name no_zero_smul_divisors | |
-/ | |
#print subalgebra_top_dim_eq_submodule_top_dim /- _inst_6: field ↝ algebra comm_ring module module no_meet_fake_name | |
_inst_7: field ↝ algebra module module no_meet_fake_name ring | |
-/ | |
#print subalgebra_top_finrank_eq_submodule_top_finrank /- _inst_7: field ↝ algebra module module no_meet_fake_name ring | |
-/ | |
#print subalgebra.eq_bot_of_finrank_one /- _inst_7: field ↝ algebra domain no_meet_fake_name no_zero_smul_divisors | |
-/ | |
-- linear_algebra/finsupp.lean | |
#print finsupp.lhom_ext /- _inst_4: module ↝ module no_meet_fake_name | |
-/ | |
-- linear_algebra/finsupp_vector_space.lean | |
#print finsupp.basis_single_one /- _inst_1: ring ↝ module no_meet_fake_name semiring | |
-/ | |
#print finsupp.basis.tensor_product /- _inst_2: add_comm_group ↝ add_comm_monoid module | |
_inst_4: add_comm_group ↝ add_comm_monoid module | |
-/ | |
#print finsupp.dim_eq /- _inst_1: field ↝ division_ring module no_meet_fake_name | |
-/ | |
#print equiv_of_dim_eq_lift_dim /- _inst_1: field ↝ division_ring | |
-/ | |
-- linear_algebra/free_module.lean | |
#print module.free.tensor /- _inst_2: add_comm_group ↝ add_comm_monoid module | |
_inst_4: add_comm_group ↝ add_comm_monoid module | |
-/ | |
-- linear_algebra/free_module_pid.lean | |
#print eq_bot_of_rank_eq_zero /- _inst_1: comm_ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print eq_bot_of_generator_maximal_map_eq_zero /- _inst_1: comm_ring ↝ module no_meet_fake_name ring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print generator_map_dvd_of_mem /- _inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print not_mem_of_ortho /- _inst_1: integral_domain ↝ domain mul_action | |
-/ | |
#print basis.card_le_card_of_linear_independent /- _inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- linear_algebra/invariant_basis_number.lean | |
#print noetherian_ring_strong_rank_condition /- _inst_3: is_noetherian_ring ↝ is_noetherian | |
-/ | |
-- linear_algebra/lagrange.lean | |
#print lagrange.basis /- _inst_2: field ↝ comm_ring has_inv | |
-/ | |
#print lagrange.eq_zero_of_eval_eq_zero /- _inst_3: field ↝ integral_domain | |
-/ | |
-- linear_algebra/linear_independent.lean | |
#print linear_independent_iff_injective_total /- _inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_independent.group_smul /- _inst_1: ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_9: distrib_mul_action ↝ has_scalar | |
-/ | |
#print linear_independent.units_smul /- _inst_1: ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar is_scalar_tower | |
-/ | |
#print exists_maximal_independent' /- _inst_1: ring ↝ module no_meet_fake_name semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_independent.image_subtype /- _inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_independent_monoid_hom /- _inst_8: monoid ↝ mul_one_class | |
-/ | |
#print linear_independent_unique_iff /- _inst_1: ring ↝ module no_meet_fake_name semiring | |
_inst_3: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
-- linear_algebra/matrix/basis.lean | |
#print basis.to_matrix /- _inst_5: comm_ring ↝ module no_meet_fake_name semiring | |
_inst_6: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- linear_algebra/matrix/block.lean | |
#print matrix.block_triangular_matrix' /- _inst_5: comm_ring ↝ has_zero | |
-/ | |
#print matrix.block_triangular_matrix /- _inst_5: comm_ring ↝ has_zero | |
-/ | |
-- linear_algebra/matrix/determinant.lean | |
#print matrix.alg_hom.map_det /- _inst_5: comm_ring ↝ comm_semiring | |
-/ | |
-- linear_algebra/matrix/dual.lean | |
#print linear_map.to_matrix_transpose /- _inst_1: field ↝ comm_ring module module module module no_meet_fake_name | |
-/ | |
-- linear_algebra/matrix/to_lin.lean | |
#print algebra.to_matrix_lmul' /- _inst_2: comm_ring ↝ algebra module module no_meet_fake_name ring | |
-/ | |
#print algebra.to_matrix_lsmul /- _inst_2: comm_ring ↝ algebra module module no_meet_fake_name ring | |
_inst_4: algebra ↝ algebra has_scalar is_scalar_tower module module no_meet_fake_name | |
-/ | |
-- linear_algebra/matrix/trace.lean | |
#print matrix.trace_mul_comm /- _inst_6: comm_ring ↝ comm_semiring module | |
-/ | |
-- linear_algebra/multilinear.lean | |
#print multilinear_map.smul_apply /- _inst_12: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_14: smul_comm_class ↝ has_scalar | |
-/ | |
-- linear_algebra/pi_tensor_product.lean | |
#print pi_tensor_product.smul_tprod_coeff' /- _inst_6: algebra ↝ has_scalar has_scalar no_meet_fake_name | |
-/ | |
#print pi_tensor_product.module /- _inst_6: algebra ↝ module no_meet_fake_name | |
-/ | |
-- linear_algebra/prod.lean | |
#print linear_map.ker_prod_ker_le_ker_coprod /- _inst_12: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- linear_algebra/projection.lean | |
#print linear_map.ker_id_sub_eq_of_proj /- _inst_1: ring ↝ module no_meet_fake_name semiring | |
-/ | |
#print linear_map.range_eq_of_proj /- _inst_1: ring ↝ module no_meet_fake_name semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
#print linear_map.of_is_compl /- _inst_4: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_map.of_is_compl_smul /- _inst_8: comm_ring ↝ distrib_mul_action has_scalar module no_meet_fake_name ring smul_comm_class | |
-/ | |
-- linear_algebra/quadratic_form.lean | |
#print quadratic_form.polar /- _inst_1: add_comm_group ↝ has_add | |
_inst_2: ring ↝ has_sub | |
-/ | |
#print quadratic_form.coe_fn_smul /- _inst_7: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_8: smul_comm_class ↝ has_scalar | |
-/ | |
#print quadratic_form.smul_apply /- _inst_7: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_8: smul_comm_class ↝ has_scalar | |
-/ | |
#print quadratic_form.pos_def /- _inst_6: ordered_ring ↝ has_lt ring | |
-/ | |
#print quadratic_form.pos_def.smul /- _inst_8: linear_ordered_comm_ring ↝ has_scalar ordered_ring | |
-/ | |
-- linear_algebra/sesquilinear_form.lean | |
#print sesq_form.ortho_smul_left /- _inst_1: domain ↝ no_zero_divisors ring | |
-/ | |
#print sesq_form.ortho_smul_right /- _inst_1: domain ↝ no_zero_divisors ring | |
-/ | |
-- linear_algebra/tensor_product.lean | |
#print linear_map.ext₂ /- _inst_11: module ↝ has_scalar module | |
_inst_17: smul_comm_class ↝ module | |
-/ | |
#print linear_map.lsmul_injective /- _inst_1: comm_ring ↝ comm_semiring module | |
-/ | |
#print tensor_product.zero_smul /- _inst_15: module ↝ distrib_mul_action has_scalar has_scalar no_meet_fake_name smul_with_zero | |
-/ | |
#print tensor_product.smul_tmul' /- _inst_14: distrib_mul_action ↝ has_scalar has_scalar | |
_inst_16: smul_comm_class ↝ has_scalar | |
-/ | |
#print tensor_product.tmul_smul /- _inst_16: smul_comm_class ↝ has_scalar | |
-/ | |
#print tensor_product.is_scalar_tower /- _inst_14: distrib_mul_action ↝ has_scalar has_scalar is_scalar_tower | |
_inst_16: smul_comm_class ↝ has_scalar is_scalar_tower | |
_inst_19: is_scalar_tower ↝ is_scalar_tower | |
-/ | |
#print tensor_product.neg.aux /- _inst_2: add_comm_group ↝ add_comm_monoid has_neg | |
_inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_map.ltensor_sub /- _inst_3: add_comm_group ↝ add_comm_monoid module module | |
-/ | |
#print linear_map.rtensor_sub /- _inst_3: add_comm_group ↝ add_comm_monoid module module | |
-/ | |
#print linear_map.ltensor_neg /- _inst_3: add_comm_group ↝ add_comm_monoid module module | |
-/ | |
#print linear_map.rtensor_neg /- _inst_3: add_comm_group ↝ add_comm_monoid module module | |
-/ | |
-- linear_algebra/unitary_group.lean | |
#print matrix.unitary_group /- _inst_3: comm_ring ↝ ring | |
-/ | |
-- linear_algebra/vandermonde.lean | |
#print matrix.vandermonde /- _inst_1: comm_ring ↝ has_pow | |
-/ | |
-- logic/basic.lean | |
#print coe_coe /- _inst_1: has_coe ↝ has_lift_t | |
_inst_2: has_coe_t ↝ has_lift_t | |
-/ | |
#print coe_fn_coe_trans /- _inst_1: has_coe ↝ has_coe_to_fun has_lift_t | |
_inst_2: has_coe_t_aux ↝ has_coe_to_fun | |
-/ | |
#print coe_fn_coe_base /- _inst_1: has_coe ↝ has_coe_to_fun has_lift_t | |
-/ | |
#print coe_sort_coe_trans /- _inst_1: has_coe ↝ has_coe_to_sort has_lift_t | |
_inst_2: has_coe_t_aux ↝ has_coe_to_sort | |
-/ | |
#print coe_sort_coe_base /- _inst_1: has_coe ↝ has_coe_to_sort has_lift_t | |
-/ | |
-- logic/relator.lean | |
#print relator.rel_forall_of_total /- _inst_1: relator.bi_total ↝ relator.left_total relator.right_total | |
-/ | |
#print relator.rel_exists_of_total /- _inst_1: relator.bi_total ↝ relator.left_total relator.right_total | |
-/ | |
-- measure_theory/ae_eq_fun.lean | |
#print measure_theory.ae_eq_fun.smul_mk /- _inst_8: opens_measurable_space ↝ has_measurable_smul has_scalar | |
_inst_10: borel_space ↝ has_measurable_smul has_scalar | |
_inst_12: module ↝ has_measurable_smul has_scalar has_scalar | |
_inst_13: has_continuous_smul ↝ has_measurable_smul has_scalar | |
-/ | |
-- measure_theory/ae_measurable_sequence.lean | |
#print ae_seq.supr /- _inst_3: complete_lattice ↝ has_Sup | |
-/ | |
-- measure_theory/arithmetic.lean | |
#print has_measurable_smul_of_mul /- _inst_2: monoid ↝ has_mul | |
-/ | |
#print has_measurable_smul₂_of_mul /- _inst_2: monoid ↝ has_mul | |
-/ | |
#print units.has_measurable_smul /- _inst_5: mul_action ↝ has_scalar | |
-/ | |
-- measure_theory/bochner_integration.lean | |
#print measure_theory.simple_func.integral_smul /- _inst_7: normed_space ↝ distrib_mul_action has_scalar | |
-/ | |
-- measure_theory/borel_space.lean | |
#print measurable_set.nhds_within_is_measurably_generated /- _inst_3: opens_measurable_space ↝ filter.is_measurably_generated no_meet_fake_name | |
-/ | |
#print measurable_set_le' /- _inst_14: partial_order ↝ preorder | |
-/ | |
#print measurable_of_continuous_on_compl_singleton /- _inst_14: t1_space ↝ measurable_singleton_class | |
-/ | |
#print has_continuous_inv'.has_measurable_inv /- _inst_14: group_with_zero ↝ has_inv has_zero | |
-/ | |
#print closed_embedding.measurable_inv_fun /- _inst_9: borel_space ↝ opens_measurable_space | |
-/ | |
#print measurable_set_ball /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable_set_closed_ball /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable_inf_dist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable_inf_nndist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable_dist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable.dist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable_nndist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable.nndist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
#print measurable_set_eball /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measurable_edist_right /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measurable_edist_left /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measurable_inf_edist /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measurable_edist /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measurable.edist /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print ae_measurable.edist /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measurable_norm /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print measurable_nnnorm /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print continuous_linear_map.measurable /- _inst_4: normed_space ↝ module | |
_inst_8: normed_space ↝ module | |
-/ | |
#print continuous_linear_map.measurable_space /- _inst_4: normed_space ↝ module semi_normed_space | |
_inst_6: normed_space ↝ module semi_normed_space | |
-/ | |
#print continuous_linear_map.measurable_apply' /- _inst_2: nondiscrete_normed_field ↝ module normed_field | |
-/ | |
-- measure_theory/content.lean | |
#print measure_theory.content.is_add_left_invariant_inner_content /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print measure_theory.content.is_mul_left_invariant_inner_content /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print measure_theory.content.is_add_left_invariant_outer_measure /- _inst_4: topological_add_group ↝ has_continuous_add | |
-/ | |
#print measure_theory.content.is_mul_left_invariant_outer_measure /- _inst_4: topological_group ↝ has_continuous_mul | |
-/ | |
-- measure_theory/ess_sup.lean | |
#print ess_sup_const /- _inst_2: complete_lattice ↝ conditionally_complete_lattice | |
-/ | |
#print ennreal.ess_sup_liminf_le /- _inst_3: linear_order ↝ preorder | |
-/ | |
-- measure_theory/group.lean | |
#print measure_theory.measure.map_mul_left_eq_self /- _inst_4: has_continuous_mul ↝ has_measurable_mul | |
_inst_5: borel_space ↝ has_measurable_mul | |
-/ | |
#print measure_theory.measure.map_add_left_eq_self /- _inst_4: has_continuous_add ↝ has_measurable_add | |
_inst_5: borel_space ↝ has_measurable_add | |
-/ | |
#print measure_theory.measure.map_mul_right_eq_self /- _inst_4: has_continuous_mul ↝ has_measurable_mul | |
_inst_5: borel_space ↝ has_measurable_mul | |
-/ | |
#print measure_theory.measure.map_add_right_eq_self /- _inst_4: has_continuous_add ↝ has_measurable_add | |
_inst_5: borel_space ↝ has_measurable_add | |
-/ | |
#print measure_theory.measure.inv_apply /- _inst_4: topological_group ↝ has_measurable_inv | |
_inst_5: borel_space ↝ has_measurable_inv | |
-/ | |
#print measure_theory.measure.neg_apply /- _inst_4: topological_add_group ↝ has_measurable_neg | |
_inst_5: borel_space ↝ has_measurable_neg | |
-/ | |
#print measure_theory.measure.is_add_left_invariant.null_iff_empty /- _inst_3: borel_space ↝ opens_measurable_space | |
_inst_5: topological_add_group ↝ has_continuous_add | |
-/ | |
#print measure_theory.is_mul_left_invariant.null_iff_empty /- _inst_3: borel_space ↝ opens_measurable_space | |
_inst_5: topological_group ↝ has_continuous_mul | |
-/ | |
-- measure_theory/haar_measure.lean | |
#print measure_theory.measure.haar.index /- _inst_1: group ↝ has_mul | |
-/ | |
-- measure_theory/hausdorff_measure.lean | |
#print measure_theory.outer_measure.mk_metric'.pre /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print measure_theory.outer_measure.trim_mk_metric /- _inst_4: borel_space ↝ opens_measurable_space | |
-/ | |
-- measure_theory/integrable_on.lean | |
#print continuous_on.ae_measurable /- _inst_3: normed_group ↝ has_zero opens_measurable_space topological_space | |
-/ | |
-- measure_theory/integral_eq_improper.lean | |
#print measure_theory.integrable_of_interval_integral_norm_tendsto /- _inst_9: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.integrable_on_Iic_of_interval_integral_norm_tendsto /- _inst_9: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.integrable_on_Ioi_of_interval_integral_norm_tendsto /- _inst_9: borel_space ↝ opens_measurable_space | |
-/ | |
-- measure_theory/integration.lean | |
#print measure_theory.simple_func.fin_meas_supp.add /- _inst_4: add_monoid ↝ add_zero_class | |
-/ | |
#print measure_theory.simple_func.fin_meas_supp.mul /- _inst_4: monoid_with_zero ↝ mul_zero_class | |
-/ | |
-- measure_theory/interval_integral.lean | |
#print interval_integrable /- _inst_1: linear_order ↝ preorder | |
-/ | |
#print interval_integral /- _inst_1: linear_order ↝ preorder | |
-/ | |
#print interval_integral.FTC_filter.nhds /- _inst_12: opens_measurable_space ↝ filter.is_measurably_generated no_meet_fake_name | |
_inst_13: order_topology ↝ filter.tendsto_Ixx_class no_meet_fake_name | |
-/ | |
#print interval_integral.FTC_filter.nhds_univ /- _inst_12: opens_measurable_space ↝ interval_integral.FTC_filter no_meet_fake_name | |
_inst_13: order_topology ↝ interval_integral.FTC_filter no_meet_fake_name | |
-/ | |
#print interval_integral.FTC_filter.nhds_left /- _inst_12: opens_measurable_space ↝ filter.is_measurably_generated no_meet_fake_name | |
_inst_13: order_topology ↝ filter.is_measurably_generated filter.tendsto_Ixx_class no_meet_fake_name | |
-/ | |
#print interval_integral.FTC_filter.nhds_right /- _inst_12: opens_measurable_space ↝ filter.is_measurably_generated no_meet_fake_name | |
_inst_13: order_topology ↝ filter.is_measurably_generated filter.tendsto_Ixx_class no_meet_fake_name | |
-/ | |
#print interval_integral.measure_integral_sub_integral_sub_linear_is_o_of_tendsto_ae /- _inst_10: order_topology ↝ order_closed_topology | |
_inst_11: borel_space ↝ opens_measurable_space | |
-/ | |
-- measure_theory/l1_space.lean | |
#print measure_theory.lintegral_nnnorm_eq_lintegral_edist /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print measure_theory.lintegral_norm_eq_lintegral_edist /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print measure_theory.lintegral_edist_triangle /- _inst_2: normed_group ↝ emetric_space | |
-/ | |
#print measure_theory.lintegral_nnnorm_zero /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print measure_theory.lintegral_nnnorm_neg /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print measure_theory.has_finite_integral /- _inst_2: normed_group ↝ has_nnnorm | |
-/ | |
#print measure_theory.all_ae_of_real_F_le_bound /- _inst_2: normed_group ↝ has_norm | |
-/ | |
#print measure_theory.all_ae_tendsto_of_real_norm /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print measure_theory.tendsto_lintegral_norm_of_dominated_convergence /- _inst_5: borel_space ↝ has_measurable_sub₂ opens_measurable_space | |
_inst_6: topological_space.second_countable_topology ↝ has_measurable_sub₂ | |
-/ | |
#print measure_theory.has_finite_integral.smul /- _inst_5: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print measure_theory.integrable.add /- _inst_7: borel_space ↝ has_measurable_add₂ opens_measurable_space | |
_inst_8: topological_space.second_countable_topology ↝ has_measurable_add₂ | |
-/ | |
#print measure_theory.integrable.neg /- _inst_7: borel_space ↝ has_measurable_neg | |
-/ | |
#print measure_theory.integrable.smul /- _inst_10: opens_measurable_space ↝ has_measurable_smul | |
_inst_11: borel_space ↝ has_measurable_smul | |
-/ | |
#print measure_theory.integrable_smul_iff /- _inst_10: opens_measurable_space ↝ has_measurable_smul | |
_inst_11: borel_space ↝ has_measurable_smul | |
-/ | |
#print continuous_linear_map.integrable_comp /- _inst_10: is_R_or_C ↝ module nondiscrete_normed_field semi_normed_space | |
-/ | |
-- measure_theory/l2_space.lean | |
#print measure_theory.L2.inner_def /- _inst_4: inner_product_space ↝ has_inner has_inner normed_group | |
-/ | |
#print measure_theory.bounded_continuous_function.inner_to_Lp /- _inst_2: measure_theory.measure_space ↝ has_inner measurable_space module | |
-/ | |
#print measure_theory.continuous_map.inner_to_Lp /- _inst_2: measure_theory.measure_space ↝ has_inner measurable_space module | |
-/ | |
-- measure_theory/lp_space.lean | |
#print measure_theory.snorm' /- _inst_4: normed_group ↝ has_nnnorm | |
-/ | |
#print measure_theory.snorm_ess_sup /- _inst_4: normed_group ↝ has_nnnorm | |
-/ | |
#print measure_theory.mem_ℒp.neg /- _inst_6: borel_space ↝ has_measurable_neg | |
-/ | |
#print measure_theory.snorm'_le_snorm'_mul_rpow_measure_univ /- _inst_6: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.snorm'_add_le /- _inst_6: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.snorm'_sum_le /- _inst_7: topological_space.second_countable_topology ↝ has_measurable_add₂ | |
-/ | |
#print measure_theory.snorm_sum_le /- _inst_7: topological_space.second_countable_topology ↝ has_measurable_add₂ | |
-/ | |
#print measure_theory.snorm'_add_lt_top_of_le_one /- _inst_6: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.mem_ℒp.add /- _inst_7: topological_space.second_countable_topology ↝ has_measurable_add₂ | |
-/ | |
#print measure_theory.snorm'_const_smul /- _inst_8: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print measure_theory.snorm_ess_sup_const_smul /- _inst_8: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print measure_theory.mem_ℒp.const_smul /- _inst_10: opens_measurable_space ↝ has_measurable_smul | |
_inst_11: borel_space ↝ has_measurable_smul | |
-/ | |
#print measure_theory.snorm'_smul_le_mul_snorm' /- _inst_7: normed_space ↝ has_scalar semi_normed_space | |
-/ | |
#print measure_theory.Lp.snorm'_lim_eq_lintegral_liminf /- _inst_8: nonempty ↝ filter.ne_bot | |
_inst_9: linear_order ↝ filter.ne_bot preorder | |
-/ | |
#print measure_theory.Lp.snorm'_lim_le_liminf_snorm' /- _inst_10: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.Lp.snorm_exponent_top_lim_eq_ess_sup_liminf /- _inst_8: nonempty ↝ filter.ne_bot | |
_inst_9: linear_order ↝ filter.ne_bot preorder | |
-/ | |
#print measure_theory.Lp.cauchy_tendsto_of_tendsto /- _inst_7: topological_space.second_countable_topology ↝ has_measurable_sub₂ | |
-/ | |
#print measure_theory.Lp.mem_ℒp_of_cauchy_tendsto /- _inst_7: topological_space.second_countable_topology ↝ has_measurable_sub₂ | |
-/ | |
-- measure_theory/measurable_space.lean | |
#print measurable_set.coe_insert /- _inst_2: measurable_singleton_class ↝ has_insert | |
-/ | |
-- measure_theory/measure_space.lean | |
#print metric.bounded.finite_measure /- _inst_1: metric_space ↝ pseudo_metric_space t2_space | |
-/ | |
-- measure_theory/prod.lean | |
#print measure_theory.measure.prod_restrict /- _inst_9: measure_theory.sigma_finite ↝ measure_theory.sigma_finite no_meet_fake_name | |
-/ | |
#print measure_theory.measure.add_prod /- _inst_9: measure_theory.sigma_finite ↝ measure_theory.sigma_finite no_meet_fake_name | |
_inst_10: measure_theory.sigma_finite ↝ measure_theory.sigma_finite no_meet_fake_name | |
-/ | |
-- measure_theory/prod_group.lean | |
#print measure_theory.map_prod_mul_eq /- _inst_3: topological_space.second_countable_topology ↝ has_measurable_mul₂ | |
_inst_4: borel_space ↝ has_measurable_mul₂ | |
_inst_6: topological_group ↝ has_measurable_mul₂ | |
-/ | |
#print measure_theory.measurable_measure_mul_right /- _inst_3: topological_space.second_countable_topology ↝ has_measurable_mul₂ | |
_inst_4: borel_space ↝ has_measurable_mul₂ | |
_inst_6: topological_group ↝ has_measurable_mul₂ | |
-/ | |
-- measure_theory/regular.lean | |
#print measure_theory.measure.weakly_regular.inner_regular_of_pseudo_emetric_space /- _inst_5: borel_space ↝ opens_measurable_space | |
-/ | |
#print measure_theory.measure.regular.of_sigma_compact_space_of_locally_finite_measure /- _inst_3: emetric_space ↝ measure_theory.measure.weakly_regular no_meet_fake_name opens_measurable_space pseudo_emetric_space t2_space | |
-/ | |
-- measure_theory/set_integral.lean | |
#print measure_theory.Lp_to_Lp_restrict_smul /- _inst_6: is_R_or_C ↝ module normed_field | |
-/ | |
#print continuous_at.integral_sub_linear_is_o_ae /- _inst_5: opens_measurable_space ↝ filter.is_measurably_generated no_meet_fake_name | |
-/ | |
#print continuous_linear_map.integral_comp_Lp /- _inst_4: is_R_or_C ↝ module nondiscrete_normed_field | |
-/ | |
-- measure_theory/simple_func_dense.lean | |
#print measure_theory.simple_func.exists_forall_norm_le /- _inst_4: normed_group ↝ has_norm | |
-/ | |
-- measure_theory/vitali_caratheodory.lean | |
#print measure_theory.simple_func.exists_le_lower_semicontinuous_lintegral_ge /- _inst_3: borel_space ↝ opens_measurable_space | |
-/ | |
-- number_theory/arithmetic_function.lean | |
#print nat.arithmetic_function.has_mul /- _inst_1: semiring ↝ add_comm_monoid has_scalar | |
-/ | |
#print nat.arithmetic_function.one_smul' /- _inst_3: module ↝ has_scalar mul_action no_meet_fake_name smul_with_zero | |
-/ | |
#print nat.arithmetic_function.coe_zeta_smul_apply /- _inst_1: comm_ring ↝ mul_action semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid has_scalar mul_action | |
_inst_3: module ↝ has_scalar mul_action | |
-/ | |
#print nat.arithmetic_function.pmul_zeta /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print nat.arithmetic_function.zeta_pmul /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print nat.arithmetic_function.is_multiplicative /- _inst_1: monoid_with_zero ↝ has_mul mul_zero_one_class | |
-/ | |
#print nat.arithmetic_function.coe_moebius_mul_coe_zeta /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print nat.arithmetic_function.sum_eq_iff_sum_mul_moebius_eq /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- number_theory/bernoulli.lean | |
#print bernoulli'_power_series /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print bernoulli_power_series /- _inst_1: comm_ring ↝ semiring | |
-/ | |
-- number_theory/liouville/basic.lean | |
#print liouville.exists_one_le_pow_mul_dist /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
-- number_theory/padics/ring_homs.lean | |
#print padic_int.nth_hom /- _inst_1: comm_ring ↝ non_assoc_semiring | |
-/ | |
#print padic_int.to_zmod_pow_eq_iff_ext /- _inst_1: comm_ring ↝ non_assoc_semiring | |
-/ | |
-- number_theory/zsqrtd/basic.lean | |
#print zsqrtd.hom_ext /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- number_theory/zsqrtd/gaussian_int.lean | |
#print gaussian_int.nat_cast_nat_abs_norm /- _inst_1: ring ↝ has_add has_neg mul_zero_one_class | |
-/ | |
-- order/atoms.lean | |
#print is_atom /- _inst_1: order_bot ↝ has_bot has_lt | |
-/ | |
#print is_coatom /- _inst_1: order_top ↝ has_lt has_top | |
-/ | |
#print is_atom.inf_eq_bot_of_ne /- _inst_1: semilattice_inf_bot ↝ nonempty_fin_lin_ord | |
-/ | |
#print is_coatom.sup_eq_top_of_ne /- _inst_1: semilattice_sup_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print is_simple_lattice_iff_is_simple_lattice_order_dual /- _inst_1: bounded_lattice ↝ is_simple_lattice | |
-/ | |
#print is_atom_top /- _inst_1: bounded_lattice ↝ is_simple_lattice | |
-/ | |
#print is_simple_lattice.boolean_algebra /- _inst_1: bounded_lattice ↝ bounded_distrib_lattice | |
-/ | |
-- order/basic.lean | |
#print monotone /- _inst_1: preorder ↝ has_le | |
_inst_2: preorder ↝ has_le | |
-/ | |
#print strict_mono_incr_on.dual /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
-/ | |
#print strict_mono_incr_on.dual_right /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
-/ | |
#print strict_mono_decr_on.dual /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
-/ | |
#print strict_mono_decr_on.dual_right /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
-/ | |
#print strict_mono.ite' /- _inst_1: preorder ↝ has_lt | |
-/ | |
-- order/bounded_lattice.lean | |
#print top_sup_eq /- _inst_1: semilattice_sup_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print sup_top_eq /- _inst_1: semilattice_sup_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print bot_sup_eq /- _inst_1: semilattice_sup_bot ↝ nonempty_fin_lin_ord | |
-/ | |
#print sup_bot_eq /- _inst_1: semilattice_sup_bot ↝ nonempty_fin_lin_ord | |
-/ | |
#print sup_eq_bot_iff /- _inst_1: semilattice_sup_bot ↝ nonempty_fin_lin_ord | |
-/ | |
#print top_inf_eq /- _inst_1: semilattice_inf_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print inf_top_eq /- _inst_1: semilattice_inf_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print inf_eq_top_iff /- _inst_1: semilattice_inf_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print bot_inf_eq /- _inst_1: semilattice_inf_bot ↝ nonempty_fin_lin_ord | |
-/ | |
#print inf_bot_eq /- _inst_1: semilattice_inf_bot ↝ nonempty_fin_lin_ord | |
-/ | |
#print eq_bot_of_bot_eq_top /- _inst_1: bounded_lattice ↝ nonempty_fin_lin_ord | |
-/ | |
#print eq_top_of_bot_eq_top /- _inst_1: bounded_lattice ↝ nonempty_fin_lin_ord | |
-/ | |
#print subsingleton_of_top_le_bot /- _inst_1: bounded_lattice ↝ nonempty_fin_lin_ord | |
-/ | |
#print with_bot.coe_le /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print with_bot.coe_lt_coe /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print with_top.coe_le_coe /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print with_top.coe_lt_coe /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print with_top.coe_lt_top /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print disjoint /- _inst_1: semilattice_inf_bot ↝ has_bot has_inf has_le | |
-/ | |
-- order/bounds.lean | |
#print upper_bounds /- _inst_1: preorder ↝ has_le | |
-/ | |
#print lower_bounds /- _inst_1: preorder ↝ has_le | |
-/ | |
#print is_glb.exists_between_self_add /- _inst_1: linear_ordered_add_comm_group ↝ add_zero_class covariant_class linear_order | |
-/ | |
#print is_glb.exists_between_self_add' /- _inst_1: linear_ordered_add_comm_group ↝ add_zero_class covariant_class linear_order | |
-/ | |
#print is_lub.exists_between_sub_self /- _inst_1: linear_ordered_add_comm_group ↝ add_group covariant_class covariant_class linear_order | |
-/ | |
#print is_lub.exists_between_sub_self' /- _inst_1: linear_ordered_add_comm_group ↝ add_group covariant_class covariant_class linear_order | |
-/ | |
-- order/closure.lean | |
#print closure_operator.ext /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print closure_operator.monotone /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print closure_operator.le_closure /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print closure_operator.idempotent /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print closure_operator.closed /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print lower_adjoint.mem_closed_iff_closure_le /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print lower_adjoint.closure_is_closed /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print lower_adjoint.closed_eq_range_close /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print lower_adjoint.closure_le_closed_iff_le /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print lower_adjoint.subset_closure /- _inst_1: set_like ↝ has_coe_t preorder | |
-/ | |
#print lower_adjoint.le_iff_subset /- _inst_1: set_like ↝ has_coe_t preorder | |
-/ | |
#print lower_adjoint.closure_union_closure_subset /- _inst_1: set_like ↝ has_coe_t preorder | |
-/ | |
#print lower_adjoint.closure_union_closure_left /- _inst_1: set_like ↝ has_coe_t preorder | |
-/ | |
-- order/compactly_generated.lean | |
#print complete_lattice.is_sup_closed_compact /- _inst_1: complete_lattice ↝ has_Sup has_sup | |
-/ | |
#print is_atomistic_of_is_complemented /- _inst_3: is_compactly_generated ↝ is_atomic | |
-/ | |
-- order/complete_lattice.lean | |
#print Sup_eq_of_forall_le_of_forall_lt_exists_gt /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print le_supr /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print le_supr' /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print is_lub_supr /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print is_lub.supr_eq /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print is_glb_infi /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
#print is_glb.infi_eq /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
#print supr_le /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print infi_le /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
#print infi_le' /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
#print le_infi /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
#print infi_const /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
-- order/conditionally_complete_lattice.lean | |
#print cSup_eq_of_is_forall_le_of_forall_le_imp_ge /- _inst_1: conditionally_complete_linear_order ↝ conditionally_complete_lattice | |
-/ | |
#print Sup_within_of_ord_connected /- _inst_1: conditionally_complete_linear_order ↝ conditionally_complete_lattice | |
-/ | |
#print Inf_within_of_ord_connected /- _inst_1: conditionally_complete_linear_order ↝ conditionally_complete_lattice | |
-/ | |
-- order/filter/at_top_bot.lean | |
#print filter.tendsto_at_top_add_nonneg_left' /- _inst_1: ordered_add_comm_monoid ↝ add_zero_class covariant_class preorder | |
-/ | |
#print filter.tendsto_at_top_add_nonneg_right' /- _inst_1: ordered_add_comm_monoid ↝ add_zero_class covariant_class preorder | |
-/ | |
#print filter.tendsto_at_top_of_add_const_left /- _inst_1: ordered_cancel_add_comm_monoid ↝ contravariant_class has_add preorder | |
-/ | |
#print filter.tendsto_at_top_of_add_const_right /- _inst_1: ordered_cancel_add_comm_monoid ↝ contravariant_class has_add preorder | |
-/ | |
#print filter.tendsto_neg_at_top_at_bot /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print filter.tendsto_abs_at_top_at_top /- _inst_1: linear_ordered_add_comm_group ↝ has_neg linear_order | |
-/ | |
#print filter.prod_at_top_at_top_eq /- _inst_1: semilattice_sup ↝ preorder | |
_inst_2: semilattice_sup ↝ preorder | |
-/ | |
#print filter.tendsto_at_top_of_monotone_of_subseq /- _inst_3: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print filter.tendsto_at_bot_of_monotone_of_subseq /- _inst_3: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print exists_lt_mul_self /- _inst_1: linear_ordered_semiring ↝ filter.ne_bot no_top_order ordered_semiring | |
-/ | |
-- order/filter/basic.lean | |
#print filter.eventually_eq.div /- _inst_1: group_with_zero ↝ div_inv_monoid | |
-/ | |
#print filter.eventually_eq.div' /- _inst_1: group ↝ div_inv_monoid | |
-/ | |
#print filter.eventually_eq.sub /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
-- order/filter/extr.lean | |
#print is_min_filter /- _inst_1: preorder ↝ has_le | |
-/ | |
#print is_max_filter /- _inst_1: preorder ↝ has_le | |
-/ | |
#print is_min_filter.add /- _inst_1: ordered_add_comm_monoid ↝ covariant_class covariant_class has_add preorder | |
-/ | |
#print is_max_filter.add /- _inst_1: ordered_add_comm_monoid ↝ covariant_class covariant_class has_add preorder | |
-/ | |
-- order/filter/filter_product.lean | |
#print filter.germ.const_div /- _inst_1: division_ring ↝ has_div | |
-/ | |
#print filter.germ.abs_def /- _inst_1: linear_ordered_add_comm_group ↝ has_neg linear_order | |
-/ | |
#print filter.germ.const_abs /- _inst_1: linear_ordered_add_comm_group ↝ has_neg linear_order | |
-/ | |
-- order/filter/indicator_function.lean | |
#print indicator_union_eventually_eq /- _inst_1: add_monoid ↝ add_zero_class | |
-/ | |
-- order/filter/interval.lean | |
#print filter.tendsto_Icc_pure_pure /- _inst_2: partial_order ↝ no_meet_fake_name preorder set.ord_connected | |
-/ | |
#print filter.tendsto_Ico_pure_bot /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print filter.tendsto_Ioc_pure_bot /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print filter.tendsto_Ioo_pure_bot /- _inst_2: partial_order ↝ filter.tendsto_Ixx_class no_meet_fake_name preorder | |
-/ | |
-- order/filter/pointwise.lean | |
#print filter.map_zero /- _inst_1: add_monoid ↝ add_zero_class | |
_inst_2: add_monoid ↝ add_zero_class | |
-/ | |
#print filter.map_one /- _inst_1: monoid ↝ mul_one_class | |
_inst_2: monoid ↝ mul_one_class | |
-/ | |
-- order/filter/ultrafilter.lean | |
#print filter.hyperfilter /- _inst_1: infinite ↝ filter.ne_bot | |
-/ | |
-- order/fixed_points.lean | |
#print lfp /- _inst_1: complete_lattice ↝ has_Inf has_le | |
-/ | |
#print gfp /- _inst_1: complete_lattice ↝ has_Sup has_le | |
-/ | |
#print fixed_points.sup_le_f_of_fixed_points /- _inst_1: complete_lattice ↝ semilattice_sup | |
-/ | |
#print fixed_points.f_le_inf_of_fixed_points /- _inst_1: complete_lattice ↝ semilattice_inf | |
-/ | |
#print fixed_points.Sup_le_f_of_fixed_points /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print fixed_points.f_le_Inf_of_fixed_points /- _inst_1: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
-- order/galois_connection.lean | |
#print galois_connection /- _inst_1: preorder ↝ has_le | |
_inst_2: preorder ↝ has_le | |
-/ | |
#print galois_connection.l_supr /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
#print galois_connection.u_infi /- _inst_2: complete_lattice ↝ complete_semilattice_Inf | |
-/ | |
#print galois_coinsertion.strict_mono_l /- _inst_1: partial_order ↝ preorder | |
-/ | |
-- order/ideal.lean | |
#print order.ideal.semilattice_sup_bot.ideal_inter_nonempty /- _inst_1: semilattice_sup_bot ↝ order_bot | |
-/ | |
-- order/lexicographic.lean | |
#print lex_has_le /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_le | |
-/ | |
#print lex_has_lt /- _inst_1: preorder ↝ has_lt | |
_inst_2: preorder ↝ has_lt | |
-/ | |
#print dlex_has_le /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print dlex_has_lt /- _inst_1: preorder ↝ has_lt | |
-/ | |
-- order/liminf_limsup.lean | |
#print filter.not_is_bounded_under_of_tendsto_at_top /- _inst_1: nonempty ↝ filter.ne_bot | |
_inst_2: semilattice_sup ↝ filter.ne_bot preorder | |
-/ | |
#print filter.not_is_bounded_under_of_tendsto_at_bot /- _inst_1: nonempty ↝ filter.ne_bot | |
_inst_2: semilattice_sup ↝ filter.ne_bot preorder | |
-/ | |
#print filter.Limsup /- _inst_1: conditionally_complete_lattice ↝ has_Inf has_le | |
-/ | |
#print filter.Liminf /- _inst_1: conditionally_complete_lattice ↝ has_Sup has_le | |
-/ | |
#print filter.liminf_le_limsup /- _inst_2: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
-- order/modular_lattice.lean | |
#print is_modular_lattice.is_modular_lattice_Iic /- _inst_1: bounded_lattice ↝ lattice | |
-/ | |
#print is_modular_lattice.is_modular_lattice_Ici /- _inst_1: bounded_lattice ↝ lattice | |
-/ | |
-- order/omega_complete_partial_order.lean | |
#print omega_complete_partial_order.continuous_hom.ωSup_bind /- _inst_1: omega_complete_partial_order ↝ preorder | |
-/ | |
-- order/ord_continuous.lean | |
#print left_ord_continuous.map_Sup' /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
_inst_2: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
-- order/order_iso_nat.lean | |
#print monotonic_sequence_limit_index /- _inst_1: partial_order ↝ preorder | |
-/ | |
-- order/rel_classes.lean | |
#print is_preorder.swap /- _inst_1: is_preorder ↝ is_refl is_trans | |
-/ | |
#print is_strict_order.swap /- _inst_1: is_strict_order ↝ is_irrefl is_trans | |
-/ | |
#print is_partial_order.swap /- _inst_1: is_partial_order ↝ is_antisymm is_preorder | |
-/ | |
#print is_total_preorder.swap /- _inst_1: is_total_preorder ↝ is_preorder is_total | |
-/ | |
#print is_linear_order.swap /- _inst_1: is_linear_order ↝ is_partial_order is_total | |
-/ | |
#print ge.is_refl /- _inst_1: preorder ↝ has_le is_refl | |
-/ | |
#print ge.is_trans /- _inst_1: preorder ↝ has_le is_trans | |
-/ | |
#print has_le.le.is_preorder /- _inst_1: preorder ↝ has_le is_refl is_trans | |
-/ | |
#print ge.is_preorder /- _inst_1: preorder ↝ has_le is_refl is_trans | |
-/ | |
#print gt.is_irrefl /- _inst_1: preorder ↝ has_lt is_irrefl | |
-/ | |
#print gt.is_trans /- _inst_1: preorder ↝ has_lt is_trans | |
-/ | |
#print gt.is_asymm /- _inst_1: preorder ↝ has_lt is_asymm | |
-/ | |
#print has_lt.lt.is_antisymm /- _inst_1: preorder ↝ has_lt is_asymm | |
-/ | |
#print gt.is_antisymm /- _inst_1: preorder ↝ has_lt is_asymm | |
-/ | |
#print has_lt.lt.is_strict_order /- _inst_1: preorder ↝ has_lt is_irrefl is_trans | |
-/ | |
#print gt.is_strict_order /- _inst_1: preorder ↝ has_lt is_irrefl is_trans | |
-/ | |
#print preorder.is_total_preorder /- _inst_1: preorder ↝ has_le is_trans | |
-/ | |
#print ge.is_antisymm /- _inst_1: partial_order ↝ has_le is_antisymm | |
-/ | |
#print has_le.le.is_partial_order /- _inst_1: partial_order ↝ has_le is_antisymm is_refl is_trans | |
-/ | |
#print ge.is_partial_order /- _inst_1: partial_order ↝ has_le is_antisymm is_refl is_trans | |
-/ | |
#print ge.is_total /- _inst_1: linear_order ↝ has_le is_total | |
-/ | |
#print linear_order.is_total_preorder /- _inst_1: linear_order ↝ has_le is_total_preorder | |
-/ | |
#print ge.is_total_preorder /- _inst_1: linear_order ↝ has_le is_total is_trans | |
-/ | |
#print has_le.le.is_linear_order /- _inst_1: linear_order ↝ has_le is_antisymm is_refl is_total is_trans | |
-/ | |
#print ge.is_linear_order /- _inst_1: linear_order ↝ has_le is_antisymm is_refl is_total is_trans | |
-/ | |
#print gt.is_trichotomous /- _inst_1: linear_order ↝ has_lt is_trichotomous | |
-/ | |
#print is_strict_total_order'.swap /- _inst_1: is_strict_total_order' ↝ is_strict_order is_trichotomous | |
-/ | |
#print has_lt.lt.is_strict_total_order' /- _inst_1: linear_order ↝ has_lt is_irrefl is_trans is_trichotomous | |
-/ | |
#print is_order_connected_of_is_strict_total_order' /- _inst_1: is_strict_total_order' ↝ is_trans is_trichotomous | |
-/ | |
#print is_strict_total_order_of_is_strict_total_order' /- _inst_1: is_strict_total_order' ↝ is_asymm is_order_connected is_trichotomous | |
-/ | |
#print has_lt.lt.is_strict_total_order /- _inst_1: linear_order ↝ has_lt is_strict_total_order' | |
-/ | |
#print has_lt.lt.is_order_connected /- _inst_1: linear_order ↝ has_lt is_strict_total_order' | |
-/ | |
#print has_lt.lt.is_incomp_trans /- _inst_1: linear_order ↝ has_lt is_strict_weak_order | |
-/ | |
#print has_lt.lt.is_strict_weak_order /- _inst_1: linear_order ↝ has_lt is_strict_weak_order | |
-/ | |
#print is_extensional_of_is_strict_total_order' /- _inst_1: is_strict_total_order' ↝ is_irrefl is_trichotomous | |
-/ | |
#print is_well_order.is_strict_total_order /- _inst_1: is_well_order ↝ is_strict_total_order | |
-/ | |
#print is_well_order.is_extensional /- _inst_1: is_well_order ↝ is_extensional | |
-/ | |
#print is_well_order.is_trichotomous /- _inst_1: is_well_order ↝ is_trichotomous | |
-/ | |
#print is_well_order.is_trans /- _inst_1: is_well_order ↝ is_trans | |
-/ | |
#print is_well_order.is_irrefl /- _inst_1: is_well_order ↝ is_irrefl | |
-/ | |
#print is_well_order.is_asymm /- _inst_1: is_well_order ↝ is_asymm | |
-/ | |
#print is_well_order.linear_order /- _inst_1: is_well_order ↝ is_strict_total_order' | |
-/ | |
-- order/rel_iso.lean | |
#print rel_embedding.is_preorder /- _inst_1: is_preorder ↝ is_refl is_trans | |
-/ | |
#print rel_embedding.is_partial_order /- _inst_1: is_partial_order ↝ is_antisymm is_preorder | |
-/ | |
#print rel_embedding.is_linear_order /- _inst_1: is_linear_order ↝ is_partial_order is_total | |
-/ | |
#print rel_embedding.is_strict_order /- _inst_1: is_strict_order ↝ is_irrefl is_trans | |
-/ | |
#print rel_embedding.is_strict_total_order' /- _inst_1: is_strict_total_order' ↝ is_strict_order is_trichotomous | |
-/ | |
#print order_embedding.le_iff_le /- _inst_1: preorder ↝ has_le | |
_inst_2: preorder ↝ has_le | |
-/ | |
#print order_embedding.eq_iff_eq /- _inst_1: preorder ↝ has_le | |
_inst_2: preorder ↝ has_le | |
-/ | |
#print order_embedding.of_map_rel_iff /- _inst_3: partial_order ↝ has_le is_antisymm | |
_inst_4: preorder ↝ has_le is_refl | |
-/ | |
#print order_iso.le_iff_le /- _inst_1: preorder ↝ has_le | |
_inst_2: preorder ↝ has_le | |
-/ | |
#print order_iso.map_bot' /- _inst_1: partial_order ↝ has_le | |
-/ | |
-- order/semiconj_Sup.lean | |
#print is_order_right_adjoint /- _inst_2: preorder ↝ has_le | |
-/ | |
#print is_order_right_adjoint_Sup /- _inst_1: complete_lattice ↝ complete_semilattice_Sup | |
-/ | |
-- order/symm_diff.lean | |
#print symm_diff_comm /- _inst_1: generalized_boolean_algebra ↝ has_sdiff semilattice_sup | |
-/ | |
-- order/well_founded_set.lean | |
#print set.is_strict_order.subset /- _inst_1: is_strict_order ↝ is_irrefl is_trans | |
-/ | |
#print set.well_founded_on_iff_no_descending_seq /- _inst_1: is_strict_order ↝ is_strict_order | |
-/ | |
#print set.is_wf_iff_no_descending_seq /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print set.is_pwo /- _inst_1: preorder ↝ has_le | |
-/ | |
#print set.partially_well_ordered_on.well_founded_on /- _inst_1: is_partial_order ↝ is_antisymm is_trans | |
-/ | |
#print set.is_pwo.exists_monotone_subseq /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print set.is_pwo_iff_exists_monotone_subseq /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print set.is_pwo.image_of_monotone /- _inst_1: partial_order ↝ preorder | |
_inst_2: partial_order ↝ preorder | |
-/ | |
#print finset.is_pwo /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print set.is_wf.min /- _inst_1: partial_order ↝ has_lt | |
-/ | |
#print set.is_pwo.add /- _inst_1: ordered_cancel_add_comm_monoid ↝ covariant_class covariant_class has_add partial_order | |
-/ | |
#print set.is_pwo.mul /- _inst_1: ordered_cancel_comm_monoid ↝ covariant_class covariant_class has_mul partial_order | |
-/ | |
#print set.is_pwo.submonoid_closure /- _inst_1: ordered_cancel_comm_monoid ↝ comm_monoid covariant_class covariant_class preorder | |
-/ | |
#print set.is_pwo.add_submonoid_closure /- _inst_1: ordered_cancel_add_comm_monoid ↝ add_comm_monoid covariant_class covariant_class preorder | |
-/ | |
#print set.add_antidiagonal /- _inst_1: add_monoid ↝ has_add | |
-/ | |
#print set.mul_antidiagonal /- _inst_1: monoid ↝ has_mul | |
-/ | |
#print set.add_antidiagonal.fst_eq_fst_iff_snd_eq_snd /- _inst_1: add_cancel_comm_monoid ↝ add_cancel_monoid | |
-/ | |
#print set.mul_antidiagonal.fst_eq_fst_iff_snd_eq_snd /- _inst_1: cancel_comm_monoid ↝ cancel_monoid | |
-/ | |
#print set.add_antidiagonal.eq_of_fst_le_fst_of_snd_le_snd /- _inst_1: ordered_cancel_add_comm_monoid ↝ add_cancel_comm_monoid covariant_class covariant_class partial_order | |
-/ | |
#print set.mul_antidiagonal.eq_of_fst_le_fst_of_snd_le_snd /- _inst_1: ordered_cancel_comm_monoid ↝ cancel_comm_monoid covariant_class covariant_class partial_order | |
-/ | |
-- order/zorn.lean | |
#print zorn.chain.total /- _inst_1: preorder ↝ has_le is_refl | |
-/ | |
-- representation_theory/maschke.lean | |
#print linear_map.conjugate /- _inst_1: comm_ring ↝ comm_semiring has_scalar | |
_inst_2: group ↝ has_inv monoid | |
_inst_3: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_7: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
-- ring_theory/adjoin/basic.lean | |
#print algebra.adjoin_singleton_eq_range /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
#print algebra.adjoin_singleton_one /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
#print algebra.adjoin_int /- _inst_1: comm_ring ↝ is_subring ring | |
-/ | |
#print algebra.mem_adjoin_iff /- _inst_1: comm_ring ↝ comm_semiring is_subring no_meet_fake_name | |
-/ | |
#print algebra.fg_trans /- _inst_1: comm_ring ↝ comm_semiring is_scalar_tower is_subring module module mul_action no_meet_fake_name | |
_inst_2: comm_ring ↝ comm_semiring is_scalar_tower is_submonoid is_subring module mul_action no_meet_fake_name | |
-/ | |
-- ring_theory/adjoin_root.lean | |
#print adjoin_root.aeval_alg_hom_eq_zero /- _inst_2: comm_ring ↝ comm_semiring | |
-/ | |
-- ring_theory/algebra_tower.lean | |
#print algebra.adjoin_algebra_map' /- _inst_1: comm_ring ↝ algebra comm_semiring is_scalar_tower is_scalar_tower no_meet_fake_name | |
_inst_2: comm_ring ↝ algebra comm_semiring is_scalar_tower is_scalar_tower no_meet_fake_name | |
_inst_3: comm_ring ↝ algebra is_scalar_tower no_meet_fake_name semiring | |
_inst_5: algebra ↝ algebra is_scalar_tower no_meet_fake_name | |
-/ | |
#print algebra.adjoin_algebra_map /- _inst_1: comm_ring ↝ comm_semiring | |
_inst_2: comm_ring ↝ comm_semiring | |
_inst_3: comm_ring ↝ semiring | |
-/ | |
#print linear_independent_smul /- _inst_1: comm_ring ↝ comm_semiring module no_meet_fake_name smul_with_zero | |
_inst_2: ring ↝ module semiring | |
_inst_3: add_comm_group ↝ add_comm_monoid has_scalar no_meet_fake_name smul_with_zero | |
_inst_4: algebra ↝ has_scalar module | |
-/ | |
#print basis.smul /- _inst_3: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print exists_subalgebra_of_fg /- _inst_1: comm_ring ↝ algebra comm_semiring is_scalar_tower module no_meet_fake_name | |
_inst_2: comm_ring ↝ algebra comm_semiring is_scalar_tower module no_meet_fake_name | |
_inst_3: comm_ring ↝ is_scalar_tower module no_meet_fake_name semiring | |
_inst_7: is_scalar_tower ↝ is_scalar_tower no_meet_fake_name | |
-/ | |
#print alg_hom.restrict_domain /- _inst_2: comm_semiring ↝ semiring | |
_inst_3: comm_semiring ↝ semiring | |
-/ | |
-- ring_theory/algebraic.lean | |
#print is_algebraic /- _inst_1: comm_ring ↝ algebra comm_semiring | |
_inst_2: ring ↝ semiring | |
-/ | |
#print algebra.is_algebraic_of_finite /- _inst_2: field ↝ module ring | |
-/ | |
#print inv_eq_of_aeval_div_X_ne_zero /- _inst_3: field ↝ algebra comm_semiring | |
-/ | |
-- ring_theory/coprime.lean | |
#print is_coprime /- _inst_1: comm_semiring ↝ has_add has_mul has_one | |
-/ | |
-- ring_theory/dedekind_domain.lean | |
#print ring.dimension_le_one /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print mul_generator_self_inv /- _inst_4: integral_domain ↝ comm_ring module | |
-/ | |
-- ring_theory/derivation.lean | |
#print derivation.map_neg /- _inst_1: comm_ring ↝ comm_semiring module | |
-/ | |
#print derivation.map_sub /- _inst_1: comm_ring ↝ comm_semiring module | |
-/ | |
-- ring_theory/discrete_valuation_ring.lean | |
#print discrete_valuation_ring.has_unit_mul_pow_irreducible_factorization /- _inst_1: integral_domain ↝ monoid_with_zero | |
-/ | |
#print discrete_valuation_ring.has_unit_mul_pow_irreducible_factorization.of_ufd_of_unique_irreducible /- _inst_2: unique_factorization_monoid ↝ wf_dvd_monoid | |
-/ | |
#print discrete_valuation_ring.unit_mul_pow_congr_pow /- _inst_2: discrete_valuation_ring ↝ unique_factorization_monoid | |
-/ | |
-- ring_theory/eisenstein_criterion.lean | |
#print polynomial.eisenstein_criterion_aux.map_eq_C_mul_X_pow_of_forall_coeff_mem /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
#print polynomial.eisenstein_criterion_aux.le_nat_degree_of_map_eq_mul_X_pow /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
#print polynomial.eisenstein_criterion_aux.eval_zero_mem_ideal_of_eq_mul_X_pow /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
#print polynomial.eisenstein_criterion_aux.is_unit_of_nat_degree_eq_zero_of_forall_dvd_is_unit /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
-- ring_theory/finiteness.lean | |
#print algebra.finite_presentation /- _inst_2: comm_ring ↝ ring | |
-/ | |
#print module.is_noetherian.finite /- _inst_1: comm_ring ↝ semiring | |
_inst_6: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print module.finite.exists_fin /- _inst_1: comm_ring ↝ semiring | |
_inst_6: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print module.finite.of_surjective /- _inst_1: comm_ring ↝ semiring | |
_inst_6: add_comm_group ↝ add_comm_monoid | |
_inst_8: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print module.finite.of_injective /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print module.finite.self /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print module.finite.trans /- _inst_1: comm_ring ↝ comm_semiring module | |
_inst_2: comm_ring ↝ comm_semiring module | |
_inst_4: comm_ring ↝ module semiring | |
_inst_5: algebra ↝ has_scalar module | |
_inst_10: algebra ↝ has_scalar module | |
-/ | |
#print ring_hom.finite /- _inst_1: comm_ring ↝ comm_semiring module | |
_inst_2: comm_ring ↝ comm_semiring module | |
-/ | |
#print alg_hom.finite /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print alg_hom.finite_type /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print alg_hom.finite_presentation /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print add_monoid_algebra.of'_mem_span /- _inst_1: comm_ring ↝ module module no_meet_fake_name semiring | |
_inst_2: add_comm_monoid ↝ add_zero_class | |
-/ | |
#print monoid_algebra.of_mem_span_of_iff /- _inst_1: comm_ring ↝ module module no_meet_fake_name semiring | |
_inst_2: comm_monoid ↝ mul_one_class | |
-/ | |
-- ring_theory/fractional_ideal.lean | |
#print ring.fractional_ideal.exists_ne_zero_mem_is_integer /- _inst_4: field ↝ comm_ring module no_zero_divisors | |
-/ | |
#print ring.fractional_ideal.map_ne_zero /- _inst_5: field ↝ comm_ring | |
-/ | |
#print ring.fractional_ideal.nontrivial /- _inst_4: integral_domain ↝ comm_ring has_mem | |
_inst_5: field ↝ integral_domain | |
-/ | |
#print ring.fractional_ideal.fractional_div_of_nonzero /- _inst_5: field ↝ comm_ring module mul_action no_zero_divisors | |
-/ | |
#print ring.fractional_ideal.is_principal /- _inst_9: is_principal_ideal_ring ↝ no_meet_fake_name submodule.is_principal | |
-/ | |
#print ring.fractional_ideal.is_noetherian_zero /- _inst_4: integral_domain ↝ comm_ring module module module no_meet_fake_name | |
_inst_5: field ↝ comm_ring module module module no_meet_fake_name | |
-/ | |
#print ring.fractional_ideal.is_noetherian_iff /- _inst_4: integral_domain ↝ comm_ring module module module no_meet_fake_name | |
_inst_5: field ↝ comm_ring module module module no_meet_fake_name | |
-/ | |
#print ring.fractional_ideal.is_noetherian_coe_to_fractional_ideal /- _inst_7: is_noetherian_ring ↝ is_noetherian | |
-/ | |
-- ring_theory/hahn_series.lean | |
#print hahn_series.order_le_of_coeff_ne_zero /- _inst_4: linear_ordered_cancel_add_comm_monoid ↝ has_zero linear_order | |
-/ | |
#print hahn_series.min_order_le_order_add /- _inst_3: linear_ordered_cancel_add_comm_monoid ↝ has_zero linear_order | |
-/ | |
#print hahn_series.smul_coeff /- _inst_4: distrib_mul_action ↝ has_scalar has_scalar | |
-/ | |
#print hahn_series.has_one /- _inst_1: ordered_cancel_add_comm_monoid ↝ has_zero partial_order | |
-/ | |
#print hahn_series.single_zero_mul_eq_smul /- _inst_2: semiring ↝ has_scalar non_unital_non_assoc_semiring | |
-/ | |
#print hahn_series.emb_domain_one /- _inst_3: non_assoc_semiring ↝ mul_zero_one_class | |
-/ | |
-- ring_theory/ideal/basic.lean | |
#print ideal.bot_prime /- _inst_2: integral_domain ↝ domain no_zero_divisors | |
-/ | |
#print ideal.maximal_of_no_maximal /- _inst_2: comm_semiring ↝ semiring | |
-/ | |
#print ideal.quotient /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print ideal.map_pi /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print zero_mem_nonunits /- _inst_1: semiring ↝ monoid_with_zero | |
-/ | |
-- ring_theory/ideal/operations.lean | |
#print ideal.add_eq_sup /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print ideal.zero_eq_bot /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print ideal.one_eq_top /- _inst_1: comm_ring ↝ comm_semiring module | |
-/ | |
#print ideal.mul_eq_bot /- _inst_2: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
#print ideal.radical_bot_of_integral_domain /- _inst_2: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
#print ideal.comm_semiring /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print ideal.subset_union /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print ideal.map /- _inst_1: ring ↝ semiring | |
_inst_2: ring ↝ semiring | |
-/ | |
#print ring_hom.ker_is_prime /- _inst_2: integral_domain ↝ domain no_zero_divisors | |
-/ | |
#print ideal.quotient.algebra /- _inst_1: comm_ring ↝ comm_semiring | |
-/ | |
#print ideal.quotient.alg_map_eq /- _inst_1: comm_ring ↝ algebra comm_semiring | |
-/ | |
-- ring_theory/ideal/over.lean | |
#print ideal.coeff_zero_mem_comap_of_root_mem_of_eval_mem /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print ideal.exists_coeff_ne_zero_mem_comap_of_root_mem /- _inst_2: integral_domain ↝ comm_ring no_zero_divisors | |
-/ | |
#print ideal.exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff /- _inst_2: integral_domain ↝ comm_ring | |
-/ | |
#print ideal.mem_of_one_mem /- _inst_2: integral_domain ↝ semiring | |
-/ | |
#print ideal.is_maximal_comap_of_is_integral_of_is_maximal /- _inst_2: integral_domain ↝ comm_ring ideal.is_prime no_meet_fake_name | |
-/ | |
#print ideal.exists_ideal_over_prime_of_is_integral /- _inst_2: integral_domain ↝ comm_ring ideal.is_prime no_meet_fake_name | |
-/ | |
-- ring_theory/integral_closure.lean | |
#print ring_hom.is_integral_elem /- _inst_1: comm_ring ↝ semiring | |
_inst_2: ring ↝ semiring | |
-/ | |
#print is_integral_alg_hom /- _inst_2: comm_ring ↝ ring | |
_inst_3: comm_ring ↝ ring | |
-/ | |
#print is_integral_of_is_scalar_tower /- _inst_3: comm_ring ↝ ring | |
-/ | |
#print ring_hom.is_integral_zero /- _inst_4: comm_ring ↝ ring | |
-/ | |
#print ring_hom.is_integral_one /- _inst_4: comm_ring ↝ ring | |
-/ | |
#print is_integral_trans_aux /- _inst_2: comm_ring ↝ algebra comm_semiring | |
-/ | |
#print ring_hom.is_integral_of_surjective /- _inst_4: comm_ring ↝ ring | |
-/ | |
#print ring_hom.is_integral_elem_of_is_integral_elem_comp /- _inst_5: comm_ring ↝ ring | |
-/ | |
#print is_integral_tower_top_of_is_integral /- _inst_3: comm_ring ↝ ring | |
-/ | |
-- ring_theory/integral_domain.lean | |
#print card_nth_roots_subgroup_units /- _inst_2: group ↝ monoid | |
-/ | |
-- ring_theory/jacobson.lean | |
#print ideal.polynomial.quotient_mk_comp_C_is_integral_of_jacobson /- _inst_1: integral_domain ↝ comm_ring | |
-/ | |
-- ring_theory/jacobson_ideal.lean | |
#print ideal.jacobson /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print ideal.comap_jacobson /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- ring_theory/laurent_series.lean | |
#print laurent_series.power_series_part /- _inst_1: semiring ↝ has_zero | |
-/ | |
-- ring_theory/localization.lean | |
#print is_localization.is_integer /- _inst_2: comm_ring ↝ ring | |
-/ | |
#print is_localization.is_unit_comp /- _inst_4: comm_ring ↝ comm_semiring | |
-/ | |
#print is_localization.eq_of_eq /- _inst_4: comm_ring ↝ comm_semiring | |
-/ | |
#print is_localization.epic_of_localization_map /- _inst_4: comm_ring ↝ comm_semiring | |
-/ | |
#print localization.has_zero /- _inst_1: comm_ring ↝ comm_monoid_with_zero | |
-/ | |
#print is_localization.coe_submodule /- _inst_1: comm_ring ↝ comm_semiring module | |
_inst_2: comm_ring ↝ module semiring | |
-/ | |
#print is_localization.integer_normalization_eval₂_eq_zero /- _inst_9: comm_ring ↝ semiring | |
-/ | |
#print is_fraction_ring.is_unit_map_of_injective /- _inst_8: field ↝ division_ring | |
-/ | |
#print is_fraction_ring.lift /- _inst_7: field ↝ comm_ring | |
-/ | |
#print is_fraction_ring.map /- _inst_7: field ↝ comm_ring | |
_inst_8: field ↝ comm_ring | |
-/ | |
#print is_fraction_ring.field_equiv_of_ring_equiv /- _inst_7: field ↝ comm_ring | |
_inst_8: field ↝ comm_ring | |
-/ | |
#print is_fraction_ring.integer_normalization_eq_zero_iff /- _inst_7: field ↝ comm_ring distrib_mul_action no_zero_divisors | |
-/ | |
#print is_fraction_ring.comap_is_algebraic_iff /- _inst_8: field ↝ comm_ring | |
-/ | |
#print is_fraction_ring.exists_reduced_fraction /- _inst_7: field ↝ integral_domain | |
-/ | |
#print fraction_ring /- _inst_5: integral_domain ↝ comm_monoid_with_zero | |
-/ | |
#print fraction_ring.alg_equiv /- _inst_6: field ↝ comm_ring | |
-/ | |
-- ring_theory/matrix_algebra.lean | |
#print matrix_equiv_tensor.inv_fun /- _inst_3: algebra ↝ module | |
-/ | |
-- ring_theory/multiplicity.lean | |
#print multiplicity /- _inst_1: comm_monoid ↝ has_dvd has_pow | |
-/ | |
#print multiplicity.finite /- _inst_1: comm_monoid ↝ has_dvd has_pow | |
-/ | |
-- ring_theory/mv_polynomial/basic.lean | |
#print mv_polynomial.map_range_eq_map /- _inst_2: comm_ring ↝ comm_semiring | |
_inst_3: comm_ring ↝ comm_semiring | |
-/ | |
-- ring_theory/nilpotent.lean | |
#print commute.is_nilpotent_mul_left /- _inst_1: semiring ↝ monoid_with_zero | |
-/ | |
-- ring_theory/noetherian.lean | |
#print submodule.map_fg_of_fg /- _inst_7: comm_ring ↝ ring | |
-/ | |
#print submodule.fg_ker_comp /- _inst_11: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print submodule.fg_restrict_scalars /- _inst_6: comm_ring ↝ comm_semiring | |
_inst_7: comm_ring ↝ semiring | |
_inst_9: add_comm_group ↝ add_comm_monoid has_scalar | |
-/ | |
#print is_noetherian_of_surjective /- _inst_1: ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
_inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print is_noetherian_of_injective /- _inst_6: is_noetherian ↝ is_noetherian no_meet_fake_name | |
-/ | |
#print is_noetherian_iff_well_founded /- _inst_1: ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print ring.is_noetherian_of_fintype /- _inst_2: ring ↝ semiring | |
_inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print is_noetherian_of_fg_of_noetherian /- _inst_4: is_noetherian_ring ↝ is_noetherian | |
-/ | |
#print is_noetherian_ring_of_surjective /- _inst_1: comm_ring ↝ ring | |
_inst_2: comm_ring ↝ ring | |
-/ | |
#print submodule.fg_mul /- _inst_1: comm_ring ↝ comm_semiring module | |
_inst_2: ring ↝ module semiring | |
-/ | |
#print exists_prime_spectrum_prod_le /- _inst_2: is_noetherian_ring ↝ is_noetherian | |
-/ | |
#print exists_prime_spectrum_prod_le_and_ne_bot_of_domain /- _inst_4: is_noetherian_ring ↝ is_noetherian | |
-/ | |
-- ring_theory/non_zero_divisors.lean | |
#print mul_mem_non_zero_divisors /- _inst_1: comm_ring ↝ comm_monoid_with_zero | |
-/ | |
#print eq_zero_of_ne_zero_of_mul_right_eq_zero /- _inst_2: integral_domain ↝ has_mul has_zero no_zero_divisors | |
-/ | |
#print eq_zero_of_ne_zero_of_mul_left_eq_zero /- _inst_2: integral_domain ↝ has_mul has_zero no_zero_divisors | |
-/ | |
#print map_ne_zero_of_mem_non_zero_divisors /- _inst_1: comm_ring ↝ semiring | |
_inst_4: ring ↝ non_assoc_semiring | |
-/ | |
#print le_non_zero_divisors_of_domain /- _inst_2: integral_domain ↝ has_add monoid_with_zero no_zero_divisors | |
-/ | |
#print map_le_non_zero_divisors_of_injective /- _inst_2: integral_domain ↝ domain | |
-/ | |
#print prod_zero_iff_exists_zero /- _inst_3: comm_semiring ↝ comm_monoid_with_zero | |
-/ | |
-- ring_theory/norm.lean | |
#print algebra.norm /- _inst_2: integral_domain ↝ algebra module no_meet_fake_name ring | |
-/ | |
#print algebra.norm_algebra_map /- _inst_7: field ↝ integral_domain module | |
-/ | |
-- ring_theory/nullstellensatz.lean | |
#print mv_polynomial.zero_locus /- _inst_1: field ↝ integral_domain | |
-/ | |
-- ring_theory/perfection.lean | |
#print ring.perfection /- _inst_1: comm_semiring ↝ has_pow | |
-/ | |
#print mod_p /- _inst_1: field ↝ comm_ring | |
-/ | |
-- ring_theory/polynomial/basic.lean | |
#print polynomial.degree_le /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print polynomial.degree_lt /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print polynomial.frange /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print polynomial.eval₂_restriction /- _inst_2: ring ↝ semiring | |
-/ | |
#print polynomial.of_subring /- _inst_1: comm_ring ↝ ring | |
-/ | |
#print polynomial.disjoint_ker_aeval_of_coprime /- _inst_1: comm_ring ↝ algebra algebra comm_semiring no_meet_fake_name | |
_inst_2: add_comm_group ↝ add_comm_monoid algebra no_meet_fake_name | |
-/ | |
#print polynomial.sup_aeval_range_eq_top_of_coprime /- _inst_2: add_comm_group ↝ add_comm_monoid algebra no_meet_fake_name | |
-/ | |
#print polynomial.sup_ker_aeval_le_ker_aeval_mul /- _inst_2: add_comm_group ↝ add_comm_monoid algebra no_meet_fake_name | |
-/ | |
#print mv_polynomial.map_mv_polynomial_eq_eval₂ /- _inst_4: comm_ring ↝ comm_semiring | |
-/ | |
-- ring_theory/polynomial/bernstein.lean | |
#print bernstein_polynomial /- _inst_1: comm_ring ↝ ring | |
-/ | |
-- ring_theory/polynomial/content.lean | |
#print polynomial.is_primitive /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
-- ring_theory/polynomial/gauss_lemma.lean | |
#print polynomial.is_primitive.is_unit_iff_is_unit_map /- _inst_3: field ↝ integral_domain | |
-/ | |
#print polynomial.is_primitive.dvd_of_fraction_map_dvd_fraction_map /- _inst_3: field ↝ algebra has_scalar integral_domain | |
-/ | |
-- ring_theory/polynomial/rational_root.lean | |
#print scale_roots_aeval_eq_zero_of_aeval_mk'_eq_zero /- _inst_1: integral_domain ↝ algebra comm_ring | |
-/ | |
-- ring_theory/polynomial/scale_roots.lean | |
#print scale_roots /- _inst_3: comm_ring ↝ ring | |
-/ | |
#print scale_roots_eval₂_eq_zero /- _inst_3: comm_ring ↝ comm_semiring | |
-/ | |
-- ring_theory/power_basis.lean | |
#print power_basis.coe_basis /- _inst_2: comm_ring ↝ module ring | |
-/ | |
#print power_basis.finite_dimensional /- _inst_2: comm_ring ↝ module ring | |
-/ | |
#print power_basis.finrank /- _inst_2: comm_ring ↝ module ring | |
-/ | |
#print power_basis.mem_span_pow' /- _inst_1: comm_ring ↝ algebra comm_semiring module smul_comm_class | |
_inst_2: comm_ring ↝ module semiring smul_comm_class | |
-/ | |
#print power_basis.minpoly_gen /- _inst_2: comm_ring ↝ module ring | |
_inst_8: integral_domain ↝ comm_ring module | |
-/ | |
#print power_basis.dim_le_nat_degree_of_root /- _inst_8: integral_domain ↝ algebra comm_ring module no_meet_fake_name smul_with_zero | |
-/ | |
#print power_basis.nat_degree_lt_nat_degree /- _inst_1: comm_ring ↝ semiring | |
-/ | |
#print is_integral.linear_independent_pow /- _inst_2: comm_ring ↝ module ring | |
-/ | |
-- ring_theory/power_series/basic.lean | |
#print mv_power_series.X_pow_dvd_iff /- _inst_1: comm_semiring ↝ module semiring | |
-/ | |
#print mv_power_series.is_local_ring /- _inst_1: comm_ring ↝ integral_domain | |
-/ | |
#print mv_power_series.map.is_local_ring_hom /- _inst_2: comm_ring ↝ semiring | |
-/ | |
#print mv_power_series.local_ring /- _inst_1: comm_ring ↝ integral_domain | |
-/ | |
#print mv_power_series.inv /- _inst_1: field ↝ has_inv ring | |
-/ | |
#print power_series.trunc /- _inst_1: comm_semiring ↝ module semiring | |
-/ | |
#print power_series.eval_neg_hom /- _inst_1: comm_ring ↝ comm_semiring has_neg | |
-/ | |
#print power_series.eq_zero_or_eq_zero_of_mul_eq_zero /- _inst_1: integral_domain ↝ module no_zero_divisors ring | |
-/ | |
#print polynomial.coe_to_power_series /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
-- ring_theory/power_series/well_known.lean | |
#print power_series.inv_units_sub /- _inst_1: ring ↝ monoid | |
-/ | |
#print power_series.exp /- _inst_1: ring ↝ semiring | |
-/ | |
#print power_series.sin /- _inst_1: ring ↝ semiring | |
-/ | |
#print power_series.cos /- _inst_1: ring ↝ semiring | |
-/ | |
-- ring_theory/principal_ideal_domain.lean | |
#print is_prime.to_maximal_ideal /- _inst_2: is_principal_ideal_ring ↝ no_meet_fake_name submodule.is_principal | |
-/ | |
#print principal_ideal_ring.is_noetherian_ring /- _inst_2: is_principal_ideal_ring ↝ no_meet_fake_name submodule.is_principal | |
-/ | |
#print principal_ideal_ring.is_maximal_of_irreducible /- _inst_2: is_principal_ideal_ring ↝ no_meet_fake_name submodule.is_principal | |
-/ | |
#print principal_ideal_ring.ring_hom_mem_submonoid_of_factors_subset_of_units_subset /- _inst_5: semiring ↝ non_assoc_semiring | |
-/ | |
-- ring_theory/roots_of_unity.lean | |
#print roots_of_unity.coe_pow /- _inst_5: integral_domain ↝ comm_monoid | |
-/ | |
#print is_primitive_root.gpow_eq_one /- _inst_3: comm_group ↝ comm_group_with_zero | |
-/ | |
#print is_primitive_root.mem_roots_of_unity /- _inst_5: integral_domain ↝ comm_monoid | |
-/ | |
#print is_primitive_root.pow /- _inst_5: integral_domain ↝ comm_monoid | |
-/ | |
#print is_primitive_root.is_integral /- _inst_7: field ↝ comm_ring | |
-/ | |
-- ring_theory/simple_module.lean | |
#print is_simple_module /- _inst_1: ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print is_semisimple_module /- _inst_1: ring ↝ semiring | |
_inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print linear_map.surjective_or_eq_zero /- _inst_2: add_comm_group ↝ add_comm_monoid | |
-/ | |
-- ring_theory/subring.lean | |
#print ring_hom.restrict /- _inst_2: ring ↝ non_assoc_semiring | |
-/ | |
#print ring_hom.eq_of_eq_on_set_top /- _inst_2: ring ↝ non_assoc_semiring | |
-/ | |
#print subring.range_fst /- _inst_1: ring ↝ non_assoc_semiring | |
_inst_2: ring ↝ non_assoc_semiring | |
-/ | |
#print subring.range_snd /- _inst_1: ring ↝ non_assoc_semiring | |
_inst_2: ring ↝ non_assoc_semiring | |
-/ | |
#print subring.smul_comm_class_right /- _inst_6: smul_comm_class ↝ no_meet_fake_name smul_comm_class | |
-/ | |
-- ring_theory/subsemiring.lean | |
#print subsemiring.smul_comm_class_right /- _inst_7: smul_comm_class ↝ no_meet_fake_name smul_comm_class | |
-/ | |
-- ring_theory/tensor_product.lean | |
#print linear_map.base_change_sub /- _inst_1: comm_ring ↝ comm_semiring is_scalar_tower is_scalar_tower module module module smul_comm_class | |
-/ | |
#print linear_map.base_change_neg /- _inst_1: comm_ring ↝ comm_semiring is_scalar_tower is_scalar_tower module module module smul_comm_class | |
-/ | |
#print algebra.tensor_product.mul_assoc' /- _inst_3: algebra ↝ module module | |
_inst_5: algebra ↝ module module | |
-/ | |
-- ring_theory/trace.lean | |
#print algebra.trace_algebra_map /- _inst_7: field ↝ comm_ring module | |
-/ | |
-- ring_theory/unique_factorization_domain.lean | |
#print is_noetherian_ring.wf_dvd_monoid /- _inst_2: is_noetherian_ring ↝ is_noetherian | |
-/ | |
#print associates.factor_set /- _inst_2: comm_cancel_monoid_with_zero ↝ comm_monoid_with_zero | |
-/ | |
-- ring_theory/witt_vector/init_tail.lean | |
#print witt_vector.select /- _inst_1: comm_ring ↝ has_zero | |
-/ | |
-- ring_theory/witt_vector/teichmuller.lean | |
#print witt_vector.teichmuller_fun /- _inst_1: comm_ring ↝ has_zero | |
-/ | |
-- ring_theory/witt_vector/truncated.lean | |
#print truncated_witt_vector.out /- _inst_1: comm_ring ↝ has_zero | |
-/ | |
#print witt_vector.lift_fun /- _inst_2: semiring ↝ non_assoc_semiring | |
-/ | |
-- ring_theory/witt_vector/verschiebung.lean | |
#print witt_vector.verschiebung_fun /- _inst_1: comm_ring ↝ has_zero | |
-/ | |
-- ring_theory/witt_vector/witt_polynomial.lean | |
#print aeval_witt_polynomial /- _inst_3: comm_ring ↝ comm_semiring | |
-/ | |
-- set_theory/zfc.lean | |
#print Set.map_definable_aux /- H: pSet.definable ↝ | |
-/ | |
-- tactic/abel.lean | |
#print tactic.abel.term /- _inst_1: add_comm_monoid ↝ add_monoid | |
-/ | |
#print tactic.abel.termg /- _inst_1: add_comm_group ↝ sub_neg_monoid | |
-/ | |
#print tactic.abel.smul /- _inst_1: add_comm_monoid ↝ add_monoid | |
-/ | |
#print tactic.abel.smulg /- _inst_1: add_comm_group ↝ sub_neg_monoid | |
-/ | |
#print tactic.abel.unfold_sub /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
-- tactic/cancel_denoms.lean | |
#print cancel_factors.mul_subst /- _inst_1: comm_ring ↝ comm_semigroup | |
-/ | |
#print cancel_factors.div_subst /- _inst_1: field ↝ comm_group_with_zero | |
-/ | |
#print cancel_factors.cancel_factors_eq_div /- _inst_1: field ↝ comm_group_with_zero | |
-/ | |
-- tactic/linarith/lemmas.lean | |
#print linarith.eq_of_eq_of_eq /- _inst_1: ordered_semiring ↝ add_zero_class | |
-/ | |
#print linarith.le_of_eq_of_le /- _inst_1: ordered_semiring ↝ add_zero_class has_le | |
-/ | |
#print linarith.lt_of_eq_of_lt /- _inst_1: ordered_semiring ↝ add_zero_class has_lt | |
-/ | |
#print linarith.le_of_le_of_eq /- _inst_1: ordered_semiring ↝ add_zero_class has_le | |
-/ | |
#print linarith.lt_of_lt_of_eq /- _inst_1: ordered_semiring ↝ add_zero_class has_lt | |
-/ | |
#print linarith.mul_eq /- _inst_1: ordered_semiring ↝ has_lt mul_zero_class | |
-/ | |
#print linarith.mul_zero_eq /- _inst_1: semiring ↝ mul_zero_class | |
-/ | |
#print linarith.zero_mul_eq /- _inst_1: semiring ↝ mul_zero_class | |
-/ | |
-- tactic/norm_num.lean | |
#print norm_num.zero_succ /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.one_succ /- _inst_1: semiring ↝ has_add has_one | |
-/ | |
#print norm_num.bit0_succ /- _inst_1: semiring ↝ has_add has_one | |
-/ | |
#print norm_num.bit1_succ /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.zero_adc /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.adc_zero /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.one_add /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.add_bit0_bit0 /- _inst_1: semiring ↝ add_comm_semigroup | |
-/ | |
#print norm_num.add_bit0_bit1 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.add_bit1_bit0 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.add_bit1_bit1 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_one_one /- _inst_1: semiring ↝ has_add has_one | |
-/ | |
#print norm_num.adc_bit0_one /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_one_bit0 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_bit1_one /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_one_bit1 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_bit0_bit0 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_bit1_bit0 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_bit0_bit1 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.adc_bit1_bit1 /- _inst_1: semiring ↝ add_comm_semigroup has_one | |
-/ | |
#print norm_num.bit0_mul /- _inst_1: semiring ↝ distrib | |
-/ | |
#print norm_num.mul_bit0' /- _inst_1: semiring ↝ distrib | |
-/ | |
#print norm_num.mul_bit1_bit1 /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.ne_zero_of_pos /- _inst_1: ordered_add_comm_group ↝ has_zero preorder | |
-/ | |
#print norm_num.clear_denom_div /- _inst_1: division_ring ↝ group_with_zero | |
-/ | |
#print norm_num.nonneg_pos /- _inst_1: ordered_cancel_add_comm_monoid ↝ has_zero preorder | |
-/ | |
#print norm_num.nat_cast_zero /- _inst_1: semiring ↝ has_add mul_zero_one_class | |
-/ | |
#print norm_num.nat_cast_one /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.nat_cast_bit0 /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.nat_cast_bit1 /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.int_cast_zero /- _inst_1: ring ↝ has_add has_neg mul_zero_one_class | |
-/ | |
#print norm_num.int_cast_one /- _inst_1: ring ↝ has_neg non_assoc_semiring | |
-/ | |
#print norm_num.nat_cast_ne /- _inst_1: semiring ↝ non_assoc_semiring | |
-/ | |
#print norm_num.clear_denom_add /- _inst_1: division_ring ↝ domain | |
-/ | |
#print norm_num.clear_denom_simple_nat /- _inst_1: division_ring ↝ domain | |
-/ | |
#print norm_num.clear_denom_simple_div /- _inst_1: division_ring ↝ group_with_zero | |
-/ | |
#print norm_num.clear_denom_mul /- _inst_1: field ↝ comm_cancel_monoid_with_zero | |
-/ | |
#print norm_num.inv_one /- _inst_1: division_ring ↝ group_with_zero | |
-/ | |
#print norm_num.inv_one_div /- _inst_1: division_ring ↝ group_with_zero | |
-/ | |
#print norm_num.inv_div_one /- _inst_1: division_ring ↝ div_inv_monoid | |
-/ | |
#print norm_num.inv_div /- _inst_1: division_ring ↝ group_with_zero | |
-/ | |
#print norm_num.div_eq /- _inst_1: division_ring ↝ div_inv_monoid | |
-/ | |
#print norm_num.sub_pos /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
-- tactic/ring.lean | |
#print tactic.ring.horner /- _inst_1: comm_semiring ↝ has_add has_mul has_pow | |
-/ | |
#print tactic.ring.pow_succ /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring.subst_into_pow /- _inst_1: monoid ↝ has_pow | |
-/ | |
#print tactic.ring.unfold_sub /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
#print tactic.ring.unfold_div /- _inst_1: division_ring ↝ div_inv_monoid | |
-/ | |
#print tactic.ring.add_neg_eq_sub /- _inst_1: add_group ↝ sub_neg_monoid | |
-/ | |
-- tactic/ring_exp.lean | |
#print tactic.ring_exp.sum_congr /- _inst_1: comm_semiring ↝ has_add is_commutative | |
-/ | |
#print tactic.ring_exp.prod_congr /- _inst_1: comm_semiring ↝ has_mul is_commutative | |
-/ | |
#print tactic.ring_exp.exp_congr /- _inst_1: comm_semiring ↝ has_pow | |
-/ | |
#print tactic.ring_exp.base_to_exp_pf /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.exp_to_prod_pf /- _inst_1: comm_semiring ↝ mul_one_class | |
-/ | |
#print tactic.ring_exp.prod_to_sum_pf /- _inst_1: comm_semiring ↝ add_zero_class | |
-/ | |
#print tactic.ring_exp.atom_to_sum_pf /- _inst_1: comm_semiring ↝ semiring | |
-/ | |
#print tactic.ring_exp.mul_coeff_pf_one_mul /- _inst_1: comm_semiring ↝ mul_one_class | |
-/ | |
#print tactic.ring_exp.mul_coeff_pf_mul_one /- _inst_1: comm_semiring ↝ mul_one_class | |
-/ | |
#print tactic.ring_exp.add_overlap_pf /- _inst_1: comm_semiring ↝ distrib | |
-/ | |
#print tactic.ring_exp.add_overlap_pf_zero /- _inst_1: comm_semiring ↝ non_unital_non_assoc_semiring | |
-/ | |
#print tactic.ring_exp.add_pf_z_sum /- _inst_1: comm_semiring ↝ add_zero_class | |
-/ | |
#print tactic.ring_exp.add_pf_sum_z /- _inst_1: comm_semiring ↝ add_zero_class | |
-/ | |
#print tactic.ring_exp.add_pf_sum_overlap /- _inst_1: comm_semiring ↝ has_add is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.add_pf_sum_overlap_zero /- _inst_1: comm_semiring ↝ add_zero_class is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.add_pf_sum_lt /- _inst_1: comm_semiring ↝ has_add is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.add_pf_sum_gt /- _inst_1: comm_semiring ↝ has_add is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.mul_pf_c_c /- _inst_1: comm_semiring ↝ has_mul is_commutative | |
-/ | |
#print tactic.ring_exp.mul_pf_c_prod /- _inst_1: comm_semiring ↝ has_mul is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.mul_pf_prod_c /- _inst_1: comm_semiring ↝ has_mul is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.mul_pp_pf_overlap /- _inst_1: comm_semiring ↝ is_commutative monoid | |
-/ | |
#print tactic.ring_exp.mul_pp_pf_prod_lt /- _inst_1: comm_semiring ↝ has_mul is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.mul_pp_pf_prod_gt /- _inst_1: comm_semiring ↝ has_mul is_associative is_commutative | |
-/ | |
#print tactic.ring_exp.mul_p_pf_zero /- _inst_1: comm_semiring ↝ mul_zero_class | |
-/ | |
#print tactic.ring_exp.mul_p_pf_sum /- _inst_1: comm_semiring ↝ distrib | |
-/ | |
#print tactic.ring_exp.mul_pf_zero /- _inst_1: comm_semiring ↝ mul_zero_class | |
-/ | |
#print tactic.ring_exp.mul_pf_sum /- _inst_1: comm_semiring ↝ distrib | |
-/ | |
#print tactic.ring_exp.pow_e_pf_exp /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.pow_pp_pf_one /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.pow_pf_c_c /- _inst_1: comm_semiring ↝ has_pow | |
-/ | |
#print tactic.ring_exp.pow_pp_pf_c /- _inst_1: comm_semiring ↝ has_pow mul_one_class | |
-/ | |
#print tactic.ring_exp.pow_pp_pf_prod /- _inst_1: comm_semiring ↝ comm_monoid | |
-/ | |
#print tactic.ring_exp.pow_p_pf_one /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.pow_p_pf_zero /- _inst_1: comm_semiring ↝ monoid_with_zero | |
-/ | |
#print tactic.ring_exp.pow_p_pf_succ /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.pow_p_pf_singleton /- _inst_1: comm_semiring ↝ add_zero_class has_pow | |
-/ | |
#print tactic.ring_exp.pow_p_pf_cons /- _inst_1: comm_semiring ↝ has_pow | |
-/ | |
#print tactic.ring_exp.pow_pf_zero /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.pow_pf_sum /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.simple_pf_sum_zero /- _inst_1: comm_semiring ↝ add_zero_class | |
-/ | |
#print tactic.ring_exp.simple_pf_prod_one /- _inst_1: comm_semiring ↝ mul_one_class | |
-/ | |
#print tactic.ring_exp.simple_pf_var_one /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.simple_pf_exp_one /- _inst_1: comm_semiring ↝ monoid | |
-/ | |
#print tactic.ring_exp.inverse_pf /- _inst_2: division_ring ↝ has_inv | |
-/ | |
#print tactic.ring_exp.sub_pf /- _inst_2: ring ↝ sub_neg_monoid | |
-/ | |
#print tactic.ring_exp.div_pf /- _inst_2: division_ring ↝ div_inv_monoid | |
-/ | |
-- topology/G_delta.lean | |
#print is_Gδ_set_of_continuous_at /- _inst_2: emetric_space ↝ pseudo_emetric_space | |
-/ | |
-- topology/algebra/affine.lean | |
#print affine_map.continuous_iff /- _inst_8: topological_add_group ↝ has_continuous_add has_continuous_sub | |
-/ | |
-- topology/algebra/algebra.lean | |
#print continuous_algebra_map_iff_smul /- _inst_6: topological_semiring ↝ has_continuous_mul | |
-/ | |
#print subalgebra.topological_closure_topological_algebra /- _inst_7: has_continuous_smul ↝ has_continuous_smul no_meet_fake_name | |
-/ | |
#print subalgebra.topological_closure_comap'_homeomorph /- _inst_8: topological_ring ↝ topological_semiring | |
-/ | |
-- topology/algebra/floor_ring.lean | |
#print continuous_on_fract /- _inst_4: topological_add_group ↝ has_continuous_sub | |
-/ | |
#print tendsto_fract_left' /- _inst_5: topological_add_group ↝ has_continuous_sub | |
-/ | |
#print tendsto_fract_right' /- _inst_5: topological_add_group ↝ has_continuous_sub | |
-/ | |
-- topology/algebra/group.lean | |
#print nhds_translation_mul_inv /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print nhds_translation_add_neg /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print map_mul_left_nhds /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print map_add_left_nhds /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print quotient_add_group.is_open_map_coe /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print quotient_group.is_open_map_coe /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print is_open.add_left /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print is_open.mul_left /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print is_open.add_right /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print is_open.mul_right /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print topological_group.t1_space /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print topological_group.regular_space /- _inst_4: t1_space ↝ t0_space | |
-/ | |
#print compact_open_separated_mul /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print compact_open_separated_add /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print compact_covered_by_mul_left_translates /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
#print compact_covered_by_add_left_translates /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print separable_locally_compact_group.sigma_compact_space /- _inst_3: topological_group ↝ has_continuous_mul | |
-/ | |
-- topology/algebra/group_with_zero.lean | |
#print filter.tendsto.div_const /- _inst_1: group_with_zero ↝ div_inv_monoid | |
-/ | |
#print continuous_at.div_const /- _inst_1: group_with_zero ↝ div_inv_monoid | |
-/ | |
#print continuous_on.div_const /- _inst_1: group_with_zero ↝ div_inv_monoid | |
-/ | |
#print continuous.div_const /- _inst_1: group_with_zero ↝ div_inv_monoid | |
-/ | |
-- topology/algebra/infinite_sum.lean | |
#print has_sum.update /- _inst_3: topological_add_group ↝ has_continuous_add | |
-/ | |
#print has_sum.mul_left /- _inst_3: topological_semiring ↝ has_continuous_mul | |
-/ | |
#print has_sum.mul_right /- _inst_3: topological_semiring ↝ has_continuous_mul | |
-/ | |
#print has_sum.smul /- _inst_5: module ↝ distrib_mul_action has_scalar | |
-/ | |
#print has_sum_le_of_sum_le /- _inst_1: ordered_add_comm_monoid ↝ add_comm_monoid preorder | |
-/ | |
#print le_has_sum_of_le_sum /- _inst_1: ordered_add_comm_monoid ↝ add_comm_monoid preorder | |
-/ | |
#print summable_iff_cauchy_seq_finset /- _inst_1: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print summable_abs_iff /- _inst_1: linear_ordered_add_comm_group ↝ add_comm_group covariant_class linear_order topological_add_group | |
-/ | |
-- topology/algebra/module.lean | |
#print continuous_linear_map.smul_right_comp /- _inst_16: has_continuous_mul ↝ has_continuous_smul | |
-/ | |
#print continuous_linear_map.map_neg /- _inst_1: ring ↝ semiring | |
-/ | |
#print continuous_linear_map.map_sub /- _inst_1: ring ↝ semiring | |
-/ | |
#print continuous_linear_map.sub_apply' /- _inst_1: ring ↝ semiring | |
_inst_3: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print continuous_linear_map.smul_right_one_pow /- _inst_15: topological_ring ↝ has_continuous_mul has_continuous_smul topological_add_group | |
-/ | |
#print continuous_linear_map.has_scalar /- _inst_14: smul_comm_class ↝ has_scalar | |
-/ | |
#print continuous_linear_map.smul_comp /- _inst_1: ring ↝ has_scalar semiring | |
_inst_2: ring ↝ has_scalar semiring | |
_inst_5: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_8: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_11: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
_inst_13: module ↝ has_scalar has_scalar | |
_inst_14: smul_comm_class ↝ has_scalar | |
_inst_15: has_continuous_smul ↝ has_scalar | |
-/ | |
#print continuous_linear_map.smul_apply /- _inst_1: ring ↝ has_scalar semiring | |
_inst_2: ring ↝ has_scalar semiring | |
_inst_5: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_8: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
_inst_16: module ↝ has_scalar has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
_inst_18: smul_comm_class ↝ has_scalar | |
-/ | |
#print continuous_linear_map.coe_smul /- _inst_1: ring ↝ has_scalar has_scalar semiring | |
_inst_2: ring ↝ has_scalar has_scalar semiring | |
_inst_5: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
_inst_8: add_comm_group ↝ add_comm_monoid has_scalar has_scalar has_scalar | |
_inst_16: module ↝ has_scalar has_scalar has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
_inst_18: smul_comm_class ↝ has_scalar has_scalar | |
-/ | |
#print continuous_linear_map.coe_smul' /- _inst_1: ring ↝ has_scalar semiring | |
_inst_2: ring ↝ has_scalar semiring | |
_inst_5: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_8: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
_inst_16: module ↝ has_scalar has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
_inst_18: smul_comm_class ↝ has_scalar | |
-/ | |
#print continuous_linear_map.comp_smul /- _inst_1: ring ↝ has_scalar semiring | |
_inst_2: ring ↝ has_scalar semiring | |
_inst_5: add_comm_group ↝ add_comm_monoid has_scalar | |
_inst_8: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
_inst_11: add_comm_group ↝ add_comm_monoid has_scalar has_scalar | |
_inst_13: module ↝ has_scalar has_scalar | |
_inst_14: smul_comm_class ↝ has_scalar | |
_inst_15: has_continuous_smul ↝ has_scalar | |
_inst_16: module ↝ has_scalar has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
_inst_18: smul_comm_class ↝ has_scalar | |
-/ | |
#print continuous_linear_map.prod_ext_iff /- _inst_11: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print continuous_linear_map.restrict_scalars /- _inst_8: ring ↝ semiring | |
-/ | |
#print continuous_linear_map.restrict_scalars_add /- _inst_12: topological_add_group ↝ has_continuous_add | |
-/ | |
#print continuous_linear_map.restrict_scalars_smul /- _inst_12: ring ↝ has_scalar semiring | |
_inst_14: module ↝ has_scalar has_scalar | |
_inst_15: has_continuous_smul ↝ has_scalar | |
_inst_16: smul_comm_class ↝ has_scalar | |
_inst_17: smul_comm_class ↝ has_scalar | |
-/ | |
#print continuous_linear_map.to_ring_inverse /- _inst_7: add_comm_group ↝ add_comm_monoid | |
-/ | |
#print submodule.closed_complemented /- _inst_1: ring ↝ module no_meet_fake_name semiring | |
_inst_3: add_comm_group ↝ add_comm_monoid module no_meet_fake_name | |
-/ | |
-- topology/algebra/monoid.lean | |
#print has_continuous_mul.of_nhds_one /- _inst_5: monoid ↝ has_one semigroup | |
-/ | |
#print has_continuous_add.of_nhds_zero /- _inst_5: add_monoid ↝ add_semigroup has_zero | |
-/ | |
#print exists_open_nhds_zero_half /- _inst_3: add_monoid ↝ add_zero_class | |
-/ | |
#print exists_open_nhds_one_split /- _inst_3: monoid ↝ mul_one_class | |
-/ | |
#print opposite.has_continuous_mul /- _inst_3: monoid ↝ has_mul | |
-/ | |
#print submonoid.mem_nhds_one /- _inst_3: comm_monoid ↝ mul_one_class | |
-/ | |
#print add_submonoid.mem_nhds_zero /- _inst_3: add_comm_monoid ↝ add_zero_class | |
-/ | |
-- topology/algebra/mul_action.lean | |
#print units.has_continuous_smul /- _inst_4: mul_action ↝ has_scalar | |
-/ | |
#print has_continuous_mul.has_continuous_smul /- _inst_3: monoid ↝ has_mul | |
-/ | |
-- topology/algebra/multilinear.lean | |
#print continuous_multilinear_map.map_sub /- _inst_2: ring ↝ semiring | |
-/ | |
#print continuous_multilinear_map.smul_apply /- _inst_11: algebra ↝ has_scalar has_scalar | |
_inst_13: module ↝ has_scalar has_scalar | |
_inst_15: is_scalar_tower ↝ has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
-/ | |
#print continuous_multilinear_map.to_multilinear_map_smul /- _inst_11: algebra ↝ has_scalar has_scalar has_scalar | |
_inst_13: module ↝ has_scalar has_scalar has_scalar | |
_inst_15: is_scalar_tower ↝ has_scalar has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
-/ | |
#print continuous_multilinear_map.is_scalar_tower /- _inst_11: algebra ↝ has_scalar has_scalar | |
_inst_13: module ↝ has_scalar has_scalar | |
_inst_15: is_scalar_tower ↝ has_scalar | |
_inst_17: has_continuous_smul ↝ has_scalar | |
_inst_20: algebra ↝ has_scalar has_scalar | |
_inst_21: module ↝ has_scalar has_scalar | |
_inst_22: is_scalar_tower ↝ has_scalar | |
_inst_25: has_continuous_smul ↝ has_scalar | |
-/ | |
-- topology/algebra/nonarchimedean/basic.lean | |
#print nonarchimedean_ring.prod.nonarchimedean_ring /- _inst_3: nonarchimedean_ring ↝ nonarchimedean_add_group topological_ring | |
_inst_6: nonarchimedean_ring ↝ nonarchimedean_add_group topological_ring | |
-/ | |
#print nonarchimedean_ring.left_mul_subset /- _inst_3: nonarchimedean_ring ↝ has_continuous_mul | |
-/ | |
#print nonarchimedean_ring.mul_subset /- _inst_3: nonarchimedean_ring ↝ has_continuous_mul nonarchimedean_add_group | |
-/ | |
-- topology/algebra/open_subgroup.lean | |
#print submodule.is_open_mono /- _inst_1: comm_ring ↝ ring | |
_inst_4: topological_add_group ↝ has_continuous_add | |
-/ | |
#print ideal.is_open_of_open_subideal /- _inst_3: topological_ring ↝ topological_add_group | |
-/ | |
-- topology/algebra/ordered/basic.lean | |
#print preorder.topology /- _inst_1: preorder ↝ has_lt | |
-/ | |
#print order_dual.order_topology /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print is_open_iff_generate_intervals /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print nhds_eq_order /- _inst_2: partial_order ↝ preorder | |
-/ | |
#print tendsto_Ico_class_nhds /- _inst_2: partial_order ↝ filter.tendsto_Ixx_class no_meet_fake_name preorder | |
t: order_topology ↝ filter.tendsto_Ixx_class no_meet_fake_name | |
-/ | |
#print tendsto_Ioc_class_nhds /- _inst_2: partial_order ↝ filter.tendsto_Ixx_class no_meet_fake_name preorder | |
t: order_topology ↝ filter.tendsto_Ixx_class no_meet_fake_name | |
-/ | |
#print tendsto_Ioo_class_nhds /- _inst_2: partial_order ↝ filter.tendsto_Ixx_class no_meet_fake_name preorder | |
t: order_topology ↝ filter.tendsto_Ixx_class no_meet_fake_name | |
-/ | |
#print induced_order_topology' /- _inst_1: partial_order ↝ preorder | |
-/ | |
#print nhds_top_basis /- _inst_2: semilattice_sup_top ↝ nonempty_fin_lin_ord | |
-/ | |
#print order_topology.t2_space /- _inst_2: linear_order ↝ preorder t2_space | |
_inst_3: order_topology ↝ t2_space | |
-/ | |
#print Iio_mem_nhds /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print Ioi_mem_nhds /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print Ioo_mem_nhds /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print nhds_eq_infi_abs_sub /- _inst_2: linear_ordered_add_comm_group ↝ add_comm_group contravariant_class covariant_class covariant_class covariant_class linear_order | |
-/ | |
#print continuous_abs /- _inst_2: linear_ordered_add_comm_group ↝ add_group linear_order order_closed_topology topological_add_group | |
_inst_3: order_topology ↝ order_closed_topology topological_add_group | |
-/ | |
#print nhds_basis_Ioo_pos /- _inst_2: linear_ordered_add_comm_group ↝ add_comm_group contravariant_class covariant_class covariant_class linear_order | |
-/ | |
#print filter.tendsto.add_at_top /- _inst_2: linear_ordered_add_comm_group ↝ no_bot_order ordered_add_comm_group | |
-/ | |
#print tendsto_inv_zero_at_top /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print is_compact.bdd_above /- _inst_9: order_topology ↝ order_closed_topology | |
-/ | |
#print map_Sup_of_continuous_at_of_monotone' /- _inst_4: complete_linear_order ↝ complete_semilattice_Sup order_closed_topology | |
_inst_6: order_topology ↝ order_closed_topology | |
-/ | |
#print map_cSup_of_continuous_at_of_monotone /- _inst_4: conditionally_complete_linear_order ↝ conditionally_complete_lattice order_closed_topology | |
_inst_6: order_topology ↝ order_closed_topology | |
-/ | |
#print is_connected.Ioo_cInf_cSup_subset /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print is_preconnected.Ioi_cInf_subset /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print continuous.surjective /- _inst_1: conditionally_complete_linear_order ↝ filter.ne_bot filter.ne_bot preconnected_space preorder | |
_inst_3: order_topology ↝ preconnected_space | |
_inst_8: densely_ordered ↝ preconnected_space | |
-/ | |
#print continuous_on.surj_on_of_tendsto /- _inst_4: conditionally_complete_linear_order ↝ linear_order order_closed_topology | |
_inst_6: order_topology ↝ order_closed_topology | |
-/ | |
#print is_compact.is_glb_Inf /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
#print tendsto_at_bot_infi /- _inst_3: complete_linear_order ↝ conditionally_complete_linear_order_bot | |
-/ | |
#print tendsto_at_top_infi /- _inst_3: complete_linear_order ↝ conditionally_complete_linear_order_bot | |
-/ | |
#print tendsto_iff_tendsto_subseq_of_monotone /- _inst_1: semilattice_sup ↝ filter.ne_bot preorder | |
_inst_3: nonempty ↝ filter.ne_bot | |
-/ | |
#print is_lub_of_tendsto /- _inst_4: nonempty ↝ filter.ne_bot | |
-/ | |
#print supr_eq_of_tendsto /- _inst_3: order_topology ↝ no_meet_fake_name | |
_inst_4: nonempty ↝ filter.ne_bot | |
_inst_5: semilattice_sup ↝ filter.ne_bot preorder | |
-/ | |
#print infi_eq_of_tendsto /- _inst_3: order_topology ↝ no_meet_fake_name | |
_inst_4: nonempty ↝ filter.ne_bot | |
_inst_5: semilattice_sup ↝ filter.ne_bot preorder | |
-/ | |
#print tendsto_neg_nhds_within_Ioi /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print tendsto_inv_nhds_within_Ioi /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group preorder | |
-/ | |
#print tendsto_neg_nhds_within_Iio /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print tendsto_inv_nhds_within_Iio /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group preorder | |
-/ | |
#print tendsto_neg_nhds_within_Ici /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print tendsto_inv_nhds_within_Ici /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group preorder | |
-/ | |
#print tendsto_neg_nhds_within_Iic /- _inst_1: ordered_add_comm_group ↝ add_group covariant_class covariant_class preorder | |
-/ | |
#print tendsto_inv_nhds_within_Iic /- _inst_1: ordered_comm_group ↝ covariant_class covariant_class group preorder | |
-/ | |
#print continuous_within_at_Iio_iff_Iic /- _inst_2: linear_order ↝ partial_order | |
-/ | |
#print strict_mono_incr_on.continuous_at_right_of_exists_between /- _inst_3: order_topology ↝ order_closed_topology | |
_inst_4: linear_order ↝ partial_order | |
-/ | |
#print continuous_at_right_of_mono_incr_on_of_exists_between /- _inst_3: order_topology ↝ order_closed_topology | |
_inst_4: linear_order ↝ partial_order | |
-/ | |
#print order_iso.continuous /- _inst_2: partial_order ↝ preorder | |
-/ | |
-- topology/algebra/ordered/liminf_limsup.lean | |
#print filter.tendsto.is_cobounded_under_ge /- _inst_4: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print filter.tendsto.is_cobounded_under_le /- _inst_4: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print filter.tendsto.limsup_eq /- _inst_4: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print filter.tendsto.liminf_eq /- _inst_4: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
-- topology/algebra/ordered/proj_Icc.lean | |
#print continuous_proj_Icc /- _inst_3: order_topology ↝ order_closed_topology | |
-/ | |
-- topology/algebra/polynomial.lean | |
#print polynomial.continuous_eval₂ /- _inst_3: topological_semiring ↝ has_continuous_add has_continuous_mul | |
-/ | |
#print polynomial.tendsto_norm_at_top /- _inst_1: normed_ring ↝ has_norm ring | |
-/ | |
-- topology/algebra/ring.lean | |
#print prod_semiring /- _inst_3: topological_semiring ↝ has_continuous_add has_continuous_mul | |
_inst_6: topological_semiring ↝ has_continuous_add has_continuous_mul | |
-/ | |
#print topological_ring.to_topological_semiring /- t: topological_ring ↝ has_continuous_add has_continuous_mul | |
-/ | |
#print prod_ring /- _inst_3: topological_ring ↝ has_continuous_add has_continuous_mul topological_add_group | |
_inst_6: topological_ring ↝ has_continuous_add has_continuous_mul topological_add_group | |
-/ | |
#print mul_left_continuous /- _inst_3: topological_ring ↝ has_continuous_mul | |
-/ | |
#print mul_right_continuous /- _inst_3: topological_ring ↝ has_continuous_mul | |
-/ | |
#print quotient_ring.is_open_map_coe /- _inst_3: topological_ring ↝ has_continuous_add | |
-/ | |
-- topology/algebra/uniform_group.lean | |
#print add_comm_group.is_Z_bilin.comp_hom /- _inst_6: is_add_group_hom ↝ is_add_hom | |
-/ | |
#print add_comm_group.is_Z_bilin.zero_right /- _inst_4: add_comm_group.is_Z_bilin ↝ add_comm_group.is_Z_bilin no_meet_fake_name | |
-/ | |
#print add_comm_group.is_Z_bilin.neg_right /- _inst_4: add_comm_group.is_Z_bilin ↝ add_comm_group.is_Z_bilin no_meet_fake_name | |
-/ | |
#print add_comm_group.is_Z_bilin.sub_right /- _inst_4: add_comm_group.is_Z_bilin ↝ add_comm_group.is_Z_bilin no_meet_fake_name | |
-/ | |
#print is_Z_bilin.tendsto_zero_left /- _inst_5: uniform_space ↝ topological_space | |
-/ | |
#print is_Z_bilin.tendsto_zero_right /- _inst_5: uniform_space ↝ topological_space | |
-/ | |
#print tendsto_sub_comap_self /- _inst_2: add_comm_group ↝ add_group has_continuous_sub | |
_inst_3: topological_add_group ↝ has_continuous_sub | |
_inst_5: add_comm_group ↝ add_group | |
-/ | |
-- topology/algebra/uniform_ring.lean | |
#print uniform_space.completion.has_one /- _inst_1: ring ↝ has_one | |
-/ | |
#print uniform_space.completion.has_mul /- _inst_1: ring ↝ has_mul | |
-/ | |
#print uniform_space.completion.coe_mul /- _inst_3: topological_ring ↝ has_continuous_mul | |
-/ | |
#print uniform_space.completion.continuous_mul /- _inst_3: topological_ring ↝ has_continuous_mul topological_add_group | |
-/ | |
-- topology/category/Top/limits.lean | |
#print nonempty_sections_of_fintype_inverse_system /- _inst_1: directed_order ↝ category_theory.is_filtered category_theory.small_category | |
-/ | |
-- topology/connected.lean | |
#print is_connected_range /- _inst_3: connected_space ↝ nonempty preconnected_space | |
-/ | |
#print irreducible_space.connected_space /- _inst_3: irreducible_space ↝ nonempty preconnected_space | |
-/ | |
-- topology/continuous_function/algebra.lean | |
#print continuous_map.add_comp /- _inst_6: add_semigroup ↝ has_add | |
-/ | |
#print continuous_map.mul_comp /- _inst_6: semigroup ↝ has_mul | |
-/ | |
#print continuous_map.coe_smul /- _inst_8: module ↝ has_scalar has_scalar | |
_inst_9: has_continuous_smul ↝ has_scalar | |
-/ | |
#print continuous_map.is_scalar_tower /- _inst_5: algebra ↝ has_scalar has_scalar is_scalar_tower module | |
_inst_6: topological_semiring ↝ has_continuous_smul has_scalar | |
-/ | |
#print subalgebra.separates_points /- _inst_5: algebra ↝ algebra has_scalar | |
_inst_12: has_continuous_smul ↝ algebra | |
-/ | |
#print algebra_map_apply /- _inst_5: algebra ↝ algebra has_scalar | |
_inst_12: has_continuous_smul ↝ algebra | |
-/ | |
#print continuous_map.inf_eq /- _inst_5: topological_ring ↝ has_continuous_add | |
-/ | |
#print continuous_map.sup_eq /- _inst_5: topological_ring ↝ has_continuous_add module | |
-/ | |
-- topology/continuous_function/bounded.lean | |
#print bounded_continuous_function.equicontinuous_of_continuity_modulus /- _inst_4: metric_space ↝ pseudo_metric_space | |
-/ | |
#print bounded_continuous_function.has_zero /- _inst_2: normed_group ↝ has_zero metric_space | |
-/ | |
#print bounded_continuous_function.dist_le_two_norm' /- _inst_2: normed_group ↝ semi_normed_group | |
-/ | |
#print bounded_continuous_function.coe_smul /- _inst_4: normed_space ↝ has_scalar has_scalar | |
-/ | |
#print bounded_continuous_function.smul_apply /- _inst_4: normed_space ↝ has_scalar has_scalar | |
-/ | |
#print bounded_continuous_function.algebra_map_apply /- _inst_6: normed_algebra ↝ algebra has_scalar | |
-/ | |
-- topology/continuous_function/compact.lean | |
#print continuous_map.uniform_continuity /- _inst_1: metric_space ↝ pseudo_metric_space separated_space | |
_inst_3: metric_space ↝ pseudo_metric_space | |
-/ | |
-- topology/instances/ennreal.lean | |
#print edist_ne_top_of_mem_ball /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print nhds_eq_nhds_emetric_ball /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
-- topology/metric_space/antilipschitz.lean | |
#print antilipschitz_with /- _inst_1: pseudo_emetric_space ↝ has_edist | |
_inst_2: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print antilipschitz_with.is_closed_range /- _inst_5: emetric_space ↝ pseudo_emetric_space separated_space | |
-/ | |
#print antilipschitz_with.proper_space /- _inst_3: metric_space ↝ pseudo_metric_space t2_space | |
-/ | |
-- topology/metric_space/baire.lean | |
#print dense_Inter_of_open_nat /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
-- topology/metric_space/basic.lean | |
#print dist_nndist /- _inst_1: pseudo_metric_space ↝ has_dist has_nndist | |
-/ | |
#print dist_lt_coe /- _inst_1: pseudo_metric_space ↝ has_dist has_nndist | |
-/ | |
#print dist_le_coe /- _inst_1: pseudo_metric_space ↝ has_dist has_nndist | |
-/ | |
#print metric.ball /- _inst_1: pseudo_metric_space ↝ has_dist | |
-/ | |
#print metric.closed_ball /- _inst_1: pseudo_metric_space ↝ has_dist | |
-/ | |
#print metric.sphere /- _inst_1: pseudo_metric_space ↝ has_dist | |
-/ | |
#print metric.complete_of_cauchy_seq_tendsto /- _inst_1: pseudo_metric_space ↝ pseudo_emetric_space | |
-/ | |
#print totally_bounded_Icc /- _inst_1: pseudo_metric_space ↝ uniform_space | |
-/ | |
#print metric.bounded /- _inst_1: pseudo_metric_space ↝ has_dist | |
-/ | |
#print metric.diam /- _inst_1: pseudo_metric_space ↝ pseudo_emetric_space | |
-/ | |
#print metric.uniform_embedding_iff' /- _inst_3: metric_space ↝ pseudo_metric_space | |
-/ | |
#print exists_subset_Union_ball_radius_lt /- _inst_2: metric_space ↝ normal_space pseudo_metric_space | |
-/ | |
#print exists_subset_Union_ball_radius_pos_lt /- _inst_2: metric_space ↝ normal_space pseudo_metric_space | |
-/ | |
#print metric.second_countable_of_countable_discretization /- _inst_3: metric_space ↝ proper_space pseudo_metric_space | |
-/ | |
-- topology/metric_space/cau_seq_filter.lean | |
#print cau_seq.tendsto_limit /- _inst_1: normed_ring ↝ semi_normed_ring | |
-/ | |
#print cauchy_seq.is_cau_seq /- _inst_1: normed_field ↝ semi_normed_ring | |
-/ | |
-- topology/metric_space/closeds.lean | |
#print emetric.nonempty_compacts.second_countable_topology /- _inst_2: topological_space.second_countable_topology ↝ topological_space.separable_space | |
-/ | |
-- topology/metric_space/completion.lean | |
#print metric.uniform_space.completion.has_dist /- _inst_1: pseudo_metric_space ↝ has_dist uniform_space | |
-/ | |
-- topology/metric_space/contracting.lean | |
#print contracting_with /- _inst_1: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print contracting_with.one_sub_K_pos /- _inst_1: metric_space ↝ emetric_space | |
-/ | |
-- topology/metric_space/emetric_space.lean | |
#print uniformity_dist_of_mem_uniformity /- _inst_1: linear_order ↝ has_lt | |
-/ | |
#print emetric.ball /- _inst_1: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print emetric.closed_ball /- _inst_1: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print emetric.diam /- _inst_1: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print emetric_space.to_uniform_space' /- _inst_2: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print uniform_embedding_iff' /- _inst_3: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print uniformity_edist /- _inst_2: emetric_space ↝ pseudo_emetric_space | |
-/ | |
#print emetric.normal_of_emetric /- _inst_2: emetric_space ↝ paracompact_space t2_space topological_space | |
-/ | |
#print emetric.countable_closure_of_compact /- _inst_2: emetric_space ↝ pseudo_emetric_space t2_space | |
-/ | |
-- topology/metric_space/hausdorff_distance.lean | |
#print emetric.inf_edist /- _inst_1: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print metric.inf_dist /- _inst_1: pseudo_metric_space ↝ pseudo_emetric_space | |
-/ | |
#print metric.inf_nndist /- _inst_1: pseudo_metric_space ↝ pseudo_emetric_space | |
-/ | |
#print metric.Hausdorff_dist /- _inst_1: pseudo_metric_space ↝ pseudo_emetric_space | |
-/ | |
-- topology/metric_space/isometry.lean | |
#print isometry /- _inst_1: pseudo_emetric_space ↝ has_edist | |
_inst_2: pseudo_emetric_space ↝ has_edist | |
-/ | |
-- topology/metric_space/lipschitz.lean | |
#print lipschitz_with /- _inst_1: pseudo_emetric_space ↝ has_edist | |
_inst_2: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print lipschitz_on_with /- _inst_1: pseudo_emetric_space ↝ has_edist | |
_inst_2: pseudo_emetric_space ↝ has_edist | |
-/ | |
#print continuous_at_of_locally_lipschitz /- _inst_1: metric_space ↝ pseudo_metric_space | |
_inst_2: metric_space ↝ pseudo_metric_space | |
-/ | |
-- topology/metric_space/metric_separated.lean | |
#print is_metric_separated /- _inst_1: emetric_space ↝ has_edist | |
-/ | |
-- topology/semicontinuous.lean | |
#print lower_semicontinuous_within_at /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print lower_semicontinuous_at /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print upper_semicontinuous_within_at /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print upper_semicontinuous_at /- _inst_2: preorder ↝ has_lt | |
-/ | |
#print lower_semicontinuous_within_at.add' /- _inst_3: linear_ordered_add_comm_monoid ↝ covariant_class covariant_class has_add linear_order order_closed_topology | |
-/ | |
-- topology/separation.lean | |
#print tendsto_nhds_unique /- _inst_3: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print filter.tendsto.lim_eq /- _inst_3: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
-- topology/sequences.lean | |
#print compact_space.tendsto_subseq /- _inst_2: topological_space.first_countable_topology ↝ seq_compact_space | |
_inst_3: compact_space ↝ seq_compact_space | |
-/ | |
#print metric.compact_iff_seq_compact /- _inst_1: metric_space ↝ pseudo_emetric_space | |
-/ | |
#print metric.compact_space_iff_seq_compact_space /- _inst_1: metric_space ↝ pseudo_emetric_space | |
-/ | |
#print seq_compact.lebesgue_number_lemma_of_metric /- _inst_1: metric_space ↝ pseudo_metric_space | |
-/ | |
-- topology/uniform_space/abstract_completion.lean | |
#print abstract_completion.funext /- _inst_2: uniform_space ↝ topological_space | |
-/ | |
#print abstract_completion.extension₂_coe_coe /- _inst_4: separated_space ↝ t2_space | |
-/ | |
-- topology/uniform_space/basic.lean | |
#print uniform_space.is_open_ball /- _inst_1: uniform_space ↝ topological_space | |
-/ | |
-- topology/uniform_space/cauchy.lean | |
#print filter.tendsto.cauchy_map /- _inst_2: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
#print cauchy_seq /- _inst_2: semilattice_sup ↝ preorder | |
-/ | |
#print filter.tendsto.cauchy_seq /- _inst_3: nonempty ↝ filter.ne_bot | |
-/ | |
#print cauchy_seq_iff_tendsto /- _inst_2: nonempty ↝ filter.ne_bot | |
-/ | |
#print cauchy_map_iff_exists_tendsto /- _inst_3: filter.ne_bot ↝ filter.ne_bot | |
-/ | |
-- topology/uniform_space/complete_separated.lean | |
#print is_complete.is_closed /- _inst_2: separated_space ↝ t2_space | |
-/ | |
#print dense_inducing.continuous_extend_of_cauchy /- _inst_5: separated_space ↝ regular_space | |
-/ | |
-- topology/uniform_space/completion.lean | |
#print Cauchy.Cauchy_eq /- _inst_1: inhabited ↝ nonempty | |
-/ | |
#print uniform_space.completion.extension_coe /- _inst_4: separated_space ↝ t2_space | |
-/ | |
-- topology/uniform_space/uniform_embedding.lean | |
#print uniformly_extend_of_ind /- _inst_4: separated_space ↝ t2_space | |
-/ | |
#print uniformly_extend_unique /- _inst_4: separated_space ↝ t2_space | |
-/ | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment