Created
October 6, 2018 20:59
-
-
Save alexlee-gk/6149fbc13f1935098b832632d7afa756 to your computer and use it in GitHub Desktop.
Convert a feature map into an image.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
def vis_square(data, grid_shape=None, padsize=1, padval=0, cmap=None, data_min=None, data_max=None): | |
data_min = data_min if data_min is not None else data.min() | |
data_max = data_max if data_max is not None else data.max() | |
data = (data - data_min) / (data_max - data_min) | |
lead_shape = data.shape[:-3] | |
height, width, num_channels = data.shape[-3:] | |
if grid_shape is None: | |
# force the number of filters to be square | |
nrows = ncols = int(np.ceil(np.sqrt(num_channels))) | |
else: | |
nrows, ncols = grid_shape | |
assert num_channels <= nrows * ncols | |
if cmap is None: | |
cmap = plt.get_cmap('viridis') | |
data = (data * 255).astype(np.uint8) | |
data = np.array(cmap.colors)[data] | |
data = (data * 255).astype(np.uint8) | |
padding = [(0, 0)] * (data.ndim - 4) + [ | |
(0, padsize), (0, padsize), (0, nrows * ncols - num_channels)] + [(0, 0)] | |
data = np.pad(data, padding, mode='constant', constant_values=padval) | |
shape = lead_shape + (height + padsize, width + padsize, nrows, ncols, 3) | |
data = np.reshape(data, shape) | |
data = np.transpose( | |
data, tuple(range(len(lead_shape))) + (-3, -5, -2, -4, -1)) | |
shape = lead_shape + (nrows * (height+padsize), ncols * (width+padsize), 3) | |
data = np.reshape(data, shape) | |
return data |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment