-
-
Save alexlib/01c389ee6629b2b6f80f9bba572cfdca to your computer and use it in GitHub Desktop.
particle viewer/selector for Euan/Giulia
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
from typing import Dict | |
from enum import Enum | |
import napari | |
import numpy as np | |
import mrcfile | |
import pandas as pd | |
import starfile | |
import eulerangles | |
from magicgui import magicgui | |
viewer = napari.Viewer(ndisplay=3) | |
viewer.text_overlay.visible = True | |
placeholder_image = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) | |
image_layer = viewer.add_image( | |
data=placeholder_image, | |
metadata={'tomogram_id': 'placeholder'} | |
) | |
points_layer = viewer.add_points([], ndim=3) | |
image_layer.depiction = 'plane' | |
image_layer.plane.thickness = 10 | |
image_layer.rendering = 'minip' | |
def reset_view(): | |
viewer.reset_view() | |
image_layer.reset_contrast_limits() | |
image_layer.reset_contrast_limits_range() | |
@magicgui(auto_call=True) | |
def load_tomogram(file: Path): | |
with mrcfile.open(file) as mrc: | |
data = mrc.data | |
image_layer.data = data | |
image_layer.metadata['tomogram_id'] = file.stem | |
image_layer.plane.position = np.array(data.shape) // 2 | |
viewer.text_overlay.text = file.stem | |
reset_view() | |
load_particles() | |
def get_positions(star: Dict[str, pd.DataFrame], tomogram_id: str) -> np.ndarray: | |
pixel_size = float(star['optics']['rlnImagePixelSize']) | |
df = star['particles'] | |
subset = df[df['rlnTomoName'] == tomogram_id] | |
xyz = subset[[f'rlnCoordinate{ax}' for ax in 'XYZ']].to_numpy() | |
if 'rlnOriginXAngst' in star['particles'].columns: | |
shifts = subset[[f'rlnOrigin{ax}Angst' for ax in 'XYZ']].to_numpy() | |
xyz -= shifts / pixel_size | |
return xyz | |
def get_rotation_matrices(star: Dict[str, pd.DataFrame], tomogram_id: str) -> np.ndarray: | |
df = star['particles'] | |
subset = df[df['rlnTomoName'] == tomogram_id] | |
euler_angles = subset[[f'rlnAngle{e}' for e in ('Rot', 'Tilt', 'Psi')]].to_numpy() | |
rotation_matrices = eulerangles.euler2matrix( | |
euler_angles=euler_angles, | |
axes='ZYZ', | |
intrinsic=True, | |
right_handed_rotation=True, | |
) | |
rotation_matrices = eulerangles.invert_rotation_matrices(rotation_matrices) | |
return rotation_matrices | |
def get_features(star: Dict[str, pd.DataFrame], tomogram_id: str) -> pd.DataFrame: | |
df = star['particles'] | |
subset = df[df['rlnTomoName'] == tomogram_id] | |
return subset | |
@magicgui(auto_call=True) | |
def load_particles(file: Path, division_factor: float = 1): | |
if file.is_dir(): | |
return | |
tomogram_id = image_layer.metadata['tomogram_id'] | |
star = starfile.read(file) | |
xyz = get_positions(star, tomogram_id=tomogram_id) | |
rotation_matrices = get_rotation_matrices(star, tomogram_id=tomogram_id) | |
features = get_features(star, tomogram_id=tomogram_id) | |
zyx = xyz[:, ::-1] | |
points_layer.data = zyx / division_factor | |
points_layer.features = features | |
@magicgui(auto_call=True) | |
def color_by_column(column_name: str): | |
if column_name not in points_layer.features.columns: | |
return | |
points_layer.face_color = column_name | |
class Operator(Enum): | |
equals = np.equal | |
greater_than = np.greater | |
less_than = np.less | |
@magicgui( | |
auto_call=True, | |
value={'min': -1e10, 'max': 1e10} | |
) | |
def show_subset(column_name: str, operator: Operator, value: float = 1): | |
if column_name not in points_layer.features.columns: | |
return | |
idx = operator.value(points_layer.features[column_name], value) | |
points_layer.shown = idx | |
viewer.window.add_dock_widget(load_tomogram) | |
viewer.window.add_dock_widget(load_particles) | |
viewer.window.add_dock_widget(color_by_column) | |
viewer.window.add_dock_widget(show_subset) | |
napari.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment