Created
May 31, 2021 01:24
-
-
Save alexlimh/b300274ab7ead64cd567e05ed0da9a2b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Command line tool to get dense results and validate them | |
""" | |
import argparse | |
import os | |
import csv | |
import glob | |
import json | |
import gzip | |
import logging | |
import pickle | |
import time | |
from typing import List, Tuple, Dict, Iterator | |
from tqdm import tqdm | |
from pyserini.index import IndexReader | |
import numpy as np | |
import torch | |
from torch import Tensor as T | |
from torch import nn | |
from dpr.data.qa_validation import calculate_matches | |
from dpr.models import init_biencoder_components | |
from dpr.options import ( | |
add_encoder_params, | |
setup_args_gpu, | |
print_args, | |
set_encoder_params_from_state, | |
add_tokenizer_params, | |
add_cuda_params, | |
) | |
from dpr.utils.data_utils import Tensorizer | |
from dpr.utils.model_utils import ( | |
setup_for_distributed_mode, | |
get_model_obj, | |
load_states_from_checkpoint, | |
) | |
from dpr.indexer.faiss_indexers import ( | |
DenseIndexer, | |
DenseHNSWFlatIndexer, | |
DenseFlatIndexer, | |
DenseReconIndexer, | |
) | |
logger = logging.getLogger() | |
logger.setLevel(logging.INFO) | |
if logger.hasHandlers(): | |
logger.handlers.clear() | |
console = logging.StreamHandler() | |
logger.addHandler(console) | |
def load_passages(ctx_file: str) -> Dict[object, Tuple[str, str]]: | |
docs = {} | |
logger.info("Reading data from: %s", ctx_file) | |
if ctx_file.endswith(".gz"): | |
with gzip.open(ctx_file, "rt") as tsvfile: | |
reader = csv.reader( | |
tsvfile, | |
delimiter="\t", | |
) | |
# file format: doc_id, doc_text, title | |
for row in reader: | |
if row[0] != "id": | |
docs[row[0]] = (row[1], row[2]) | |
else: | |
with open(ctx_file) as tsvfile: | |
reader = csv.reader( | |
tsvfile, | |
delimiter="\t", | |
) | |
# file format: doc_id, doc_text, title | |
for row in reader: | |
if row[0] != "id": | |
docs[row[0]] = (row[1], row[2]) | |
return docs | |
def validate( | |
passages: Dict[object, Tuple[str, str]], | |
answers: List[List[str]], | |
result_ctx_ids: List[Tuple[List[object], List[float]]], | |
workers_num: int, | |
match_type: str, | |
) -> List[List[bool]]: | |
match_stats = calculate_matches( | |
passages, answers, result_ctx_ids, workers_num, match_type | |
) | |
top_k_hits = match_stats.top_k_hits | |
logger.info("Validation results: top k documents hits %s", top_k_hits) | |
top_k_hits = [v / len(result_ctx_ids) for v in top_k_hits] | |
logger.info("Validation results: top k documents hits accuracy %s", top_k_hits) | |
return match_stats.questions_doc_hits | |
def save_results( | |
path, | |
passages: Dict[object, Tuple[str, str]], | |
questions: List[str], | |
answers: List[List[str]], | |
top_passages_and_scores: List[Tuple[List[object], List[float]]], | |
per_question_hits: List[List[bool]], | |
out_file: str, | |
): | |
# join passages text with the result ids, their questions and assigning has|no answer labels | |
merged_data = [] | |
assert len(per_question_hits) == len(questions) == len(answers) | |
all_keys = list(passages.keys()) | |
for i, q in tqdm(enumerate(questions)): | |
q_answers = answers[i] | |
results_and_scores = top_passages_and_scores[i] | |
hits = per_question_hits[i] | |
docs = [passages[doc_id] for doc_id in results_and_scores[0]] | |
scores = [str(score) for score in results_and_scores[1]] | |
ctxs_num = len(hits) | |
positive_ctxs = [] | |
negative_ctxs = [] | |
hard_negative_ctxs = [] | |
for c in range(ctxs_num): | |
sample = {"title": docs[c][1], | |
"title_score": 0, | |
"text": docs[c][0], | |
"score": scores[c], | |
"passage_id": results_and_scores[0][c] | |
} | |
if hits[c]: | |
positive_ctxs.append(sample) | |
else: | |
hard_negative_ctxs.append(sample) | |
if len(positive_ctxs) == 0: | |
continue | |
docids = {doc_id:0 for doc_id in results_and_scores[0]} | |
while len(negative_ctxs) < 50: | |
neg_id = all_keys[np.random.randint(len(all_keys))] | |
if neg_id in docids: | |
continue | |
else: | |
negative_ctxs.append({"title": passages[neg_id][1], | |
"title_score": 0, | |
"text": passages[neg_id][0], | |
"score": 0, | |
"passage_id": neg_id | |
}) | |
merged_data.append( | |
{ | |
"dataset": path, | |
"question": q, | |
"answers": q_answers, | |
"positive_ctxs": positive_ctxs, | |
"negative_ctxs": negative_ctxs, | |
"hard_negative_ctxs": hard_negative_ctxs, | |
} | |
) | |
print(f"Filtered data:{len(merged_data)}/{len(questions)}") | |
with open(out_file, "w") as writer: | |
writer.write(json.dumps(merged_data, indent=4) + "\n") | |
logger.info("Saved results * scores to %s", out_file) | |
def main(args): | |
logger.info("Loading retrieved results ...") | |
with open(args.retrieval_results) as f: | |
retrieved_data = json.load(f) | |
questions = [] | |
question_answers = [] | |
top_ids_and_scores = [] | |
for sample in retrieved_data.values(): | |
questions.append(sample["question"]) | |
question_answers.append(sample["answers"]) | |
scores, ids = [], [] | |
for ctx in sample["contexts"]: | |
scores.append(ctx["score"]) | |
ids.append(ctx["docid"]) | |
top_ids_and_scores.append((ids, scores)) | |
logger.info("Loading passages ...") | |
all_passages = load_passages(args.ctx_file) | |
questions_doc_hits = validate( | |
all_passages, | |
question_answers, | |
top_ids_and_scores, | |
args.validation_workers, | |
args.match, | |
) | |
if args.out_file: | |
save_results( | |
args.retrieval_results, | |
all_passages, | |
questions, | |
question_answers, | |
top_ids_and_scores, | |
questions_doc_hits, | |
args.out_file, | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
add_encoder_params(parser) | |
add_tokenizer_params(parser) | |
add_cuda_params(parser) | |
parser.add_argument( | |
"--ctx_file", | |
required=True, | |
type=str, | |
default=None, | |
help="All passages file in the tsv format: id \\t passage_text \\t title", | |
) | |
parser.add_argument( | |
"--out_file", | |
type=str, | |
default=None, | |
help="output .tsv file path to write results to ", | |
) | |
parser.add_argument( | |
"--match", | |
type=str, | |
default="string", | |
choices=["regex", "string"], | |
help="Answer matching logic type", | |
) | |
parser.add_argument( | |
"--validation_workers", | |
type=int, | |
default=16, | |
help="Number of parallel processes to validate results", | |
) | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
default=32, | |
help="Batch size for question encoder forward pass", | |
) | |
parser.add_argument( | |
"--retrieval_results", | |
required=True, | |
type=str, | |
default=None, | |
help="Retreival results from another model", | |
) | |
args = parser.parse_args() | |
setup_args_gpu(args) | |
print_args(args) | |
main(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment