library(ggdag)
#>
#> Attaching package: 'ggdag'
#> The following object is masked from 'package:stats':
#>
#> filter
library(tidyverse)
library(tidygraph)
#>
funchir::stale_package_check('mycode.R') |
library(fastadi) | |
library(here) | |
library(igraph) | |
library(Matrix) | |
library(rcrossref) | |
library(tidygraph) | |
library(tidyverse) | |
library(vsp) | |
# pull Ji and Jin 2016 data. see: |
Aldrich, John. “R A Fisher on Bayes and Bayes’ Theorem.” Bayesian Analysis 3, no. 1 (March 2008): 161–70. https://doi.org/10.1214/08-BA306.
Bera, Anil K., and Yannis Bilias. “The MM, ME, ML, EL, EF and GMM Approaches to Estimation: A Synthesis.” Journal of Econometrics 107, no. 1–2 (March 2002): 51–86. https://doi.org/10.1016/S0304-4076(01)00113-0.
———. “Three Scores and 15 Years (1948-2023) of Rao’s Score Test: A Brief History.” arXiv, June 28, 2024. http://arxiv.org/abs/2406.19956.
Camic, Charles, and Yu Xie. “The Statistical Turn in American Social Science: Columbia University, 1890 to 1915.” American Sociological Review 59, no. 5 (October 1994): 773. https://doi.org/10.2307/2096447.
Cowles, Michael, and Caroline Davis. “On the Origins of the .05 Level of Statistical Significance.” American Psychologist 37, no. 5 (May 1982): 553–58.
library(tidyverse)
library(osfr)
meta <- osf_retrieve_file("5a9hb") |>
osf_download(conflicts = "overwrite")
data <- meta$local_path |>
read_csv() |>
select(SAI_winsorized_IQ, Raven_IQ, SAIQ_IQ_dif) |>
# pak::pak("gpiras/sphet")
library(fastRG)
#> Loading required package: Matrix
library(sphet)
# simulate from y = alpha + trt * gamma + G trt * delta + lambda G y
set.seed(26)
library(tidyverse)
library(mgcv)
#> Loading required package: nlme
#>
#> Attaching package: 'nlme'
#> The following object is masked from 'package:dplyr':
#>
#> collapse
#> This is mgcv 1.8-41. For overview type 'help("mgcv-package")'.
library(tidyverse)
p_at_least_one_event <- function(p_event, periods = 50) {
tibble(
time = 1:periods,
p_at_least_one_event = 1 - (1 - p_event)^(1:periods)
)
}
library(ggplot2) | |
data(mcycle, package = "MASS") | |
f_approxfun <- approxfun(mcycle$times, mcycle$accel) | |
f_splinefun <- splinefun(mcycle$times, mcycle$accel) | |
mcycle |> | |
ggplot(aes(times, accel)) + | |
geom_point() + |
``` r | |
# pak::pkg_install("stillmatic/MNIST") | |
library(MNIST) | |
# 1 is the most common digit in train | |
table(MNIST::mnist_train$y) / nrow(MNIST::mnist_train) | |
#> | |
#> 0 1 2 3 4 5 6 | |
#> 0.09871667 0.11236667 0.09930000 0.10218333 0.09736667 0.09035000 0.09863333 | |
#> 7 8 9 |