With Python
Dr. Yves J. Hilpisch | The Python Quants & The AI Machine
Python for Quant Finance Meetup, London, 16. November 2022
(short link to this Gist: http://bit.ly/pqf_risk)
With Python
Dr. Yves J. Hilpisch | The Python Quants & The AI Machine
Python for Quant Finance Meetup, London, 16. November 2022
(short link to this Gist: http://bit.ly/pqf_risk)
# Name: c_usda_quick_stats.py | |
# Author: Randy Runtsch | |
# Date: March 29, 2022 | |
# Project: Query USDA QuickStats API | |
# Author: Randall P. Runtsch | |
# | |
# Description: Query the USDA QuickStats api_GET API with a specified set of | |
# parameters. Write the retrieved data, in CSV format, to a file. | |
# | |
# See Quick Stats (NASS) API user guide: https://quickstats.nass.usda.gov/api |
Lecture 1: Introduction to Research — [📝Lecture Notebooks] [
Lecture 2: Introduction to Python — [📝Lecture Notebooks] [
Lecture 3: Introduction to NumPy — [📝Lecture Notebooks] [
Lecture 4: Introduction to pandas — [📝Lecture Notebooks] [
Lecture 5: Plotting Data — [📝Lecture Notebooks] [[
from typing import List | |
def http_error(status: int) -> str: | |
match status: | |
case 400: | |
return "Bad request" | |
case 404: | |
return "Not found" | |
case 418: |
## docker-compose para correr wordpress con una base de datos en mysql | |
## by PeladoNerd https://youtu.be/eoFxMaeB9H4 | |
version: '3.1' | |
services: | |
wordpress: | |
image: wordpress:php7.1-apache | |
ports: |
# -*- coding: utf-8 -*- | |
""" | |
Created on Fri Jun 02 17:02:32 2017 | |
@author: [email protected] | |
This script will pull the symbols from your specified Amibroker database and download historical EOD dividend adjusted data from Tiingo.com and will store them | |
in a folder (Destop/Data/TiingoEOD) as csv files, one for each stock (APPLE.csv SPY.csv, etc) | |
It will then attempt to open Amibroker and import the csv files. | |
You need: | |
1. To add your own Token number you will get when you register at Tiingo.com (line 51) | |
2. Specify the Amibroker database you want updated (line 99) |
def treatoutliers(self, df=None, columns=None, factor=1.5, method='IQR', treament='cap'): | |
""" | |
Removes the rows from self.df whose value does not lies in the specified standard deviation | |
:param columns: | |
:param in_stddev: | |
:return: | |
""" | |
# if not columns: | |
# columns = self.mandatory_cols_ + self.optional_cols_ + [self.target_col] | |
if not columns: |
window = 253 | |
# detrend tome series by MA | |
ratesM = data['Adj Close'].rolling(window).mean().dropna() | |
ratesD = data['Adj Close'].reindex(ratesM.index).sub(ratesM) | |
fig, axs = plt.subplots(2, figsize=(16, 8), sharex=True) | |
data['Adj Close'].plot(ax=axs[0], title="Trend") | |
ratesM.plot(ax=axs[0]) | |
ratesD.plot(ax=axs[1], c="g", title="Residuals"); |
seasonal["2019-11":"2019-12"].plot(label='Seasonality', color="blue", figsize=(20,8)); |
seasonal["2019"].plot(label='Seasonality', color="blue", figsize=(20,8)); |