Created
January 31, 2023 17:46
-
-
Save alexrockhill/b5a1ce6c6ba363cf3f277cd321a763bf to your computer and use it in GitHub Desktop.
Inflate a brain from the pial surface to visualize sEEG contacts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import os.path as op | |
import numpy as np | |
import mne | |
import imageio | |
misc_path = mne.datasets.misc.data_path() | |
sample_path = mne.datasets.sample.data_path() | |
subjects_dir = misc_path / 'seeg' | |
subject = 'sample_seeg' | |
raw = mne.io.read_raw(misc_path / 'seeg' / 'sample_seeg_ieeg.fif') | |
trans = mne.coreg.estimate_head_mri_t('sample_seeg', subjects_dir) | |
view_kwargs = dict(azimuth=120, elevation=100, distance=600, | |
focalpoint=(0, 0, -15)) | |
proj_info = mne.preprocessing.ieeg.project_sensors_onto_inflated( | |
raw.info, trans, subject, subjects_dir=subjects_dir) | |
surf_data = dict(lh=dict(), rh=dict()) | |
x_dir = np.array([1., 0., 0.]) | |
for hemi in ('lh', 'rh'): | |
for surf in ('pial', 'inflated', 'curv'): | |
for img in ('', '.T1', '.T2', ''): | |
surf_fname = op.join(subjects_dir, subject, 'surf', | |
f'{hemi}.{surf}') | |
if op.isfile(surf_fname): | |
break | |
if surf == 'curv': | |
surf_data[hemi]['curv'] = np.array(mne.surface.read_curvature( | |
surf_fname, binary=False) > 0, np.int64) | |
else: | |
coords, faces = mne.surface.read_surface(surf_fname) | |
if surf == 'inflated': | |
x_ = coords @ x_dir | |
coords -= np.max(x_) * x_dir if hemi == 'lh' else \ | |
np.min(x_) * x_dir | |
surface = dict(rr=coords, tris=faces) | |
mne.surface.complete_surface_info( | |
surface, copy=False, verbose=False, do_neighbor_tri=False) | |
surf_data[hemi][surf] = surface['rr'], surface['tris'], surface['nn'] | |
for hemi in ('lh', 'rh'): | |
surf_data[hemi]['vectors'] = \ | |
surf_data[hemi]['inflated'][0] - surf_data[hemi]['pial'][0] | |
surf_data[hemi]['normal_vectors'] = \ | |
surf_data[hemi]['inflated'][2] - surf_data[hemi]['pial'][2] | |
montage_start = raw.get_montage() | |
montage_start.apply_trans(trans) | |
ch_pos_start = montage_start.get_positions()['ch_pos'] | |
montage_end = proj_info.get_montage() | |
montage_end.apply_trans(trans) | |
ch_pos_end = montage_end.get_positions()['ch_pos'] | |
ch_pos_vectors = dict() | |
for ch in raw.ch_names: | |
ch_pos_vectors[ch] = ch_pos_end[ch] - ch_pos_start[ch] | |
brain = mne.viz.Brain(subject, subjects_dir=subjects_dir, | |
cortex='low_contrast', alpha=0.5, background='white') | |
# brain.add_sensors(raw.info, trans=trans) | |
brain.show_view(**view_kwargs) | |
brain.add_annotation('aparc.a2009s', borders=False, alpha=0.5) | |
sensor_meshes = dict() | |
sensor_locs = dict() | |
for ch in raw.ch_names: | |
loc = ch_pos_start[ch].copy() | |
sensor_mesh = brain._renderer.sphere(loc * 1000, 'yellow', 3)[1] | |
sensor_meshes[ch] = sensor_mesh | |
sensor_locs[ch] = sensor_mesh.points.copy() | |
images = [brain.screenshot()] * 5 | |
n_steps = 101 | |
for t in np.linspace(0, 1, n_steps): | |
for hemi in ('lh', 'rh'): | |
coords, faces, nn = surf_data[hemi]['pial'] | |
coords = coords.copy() | |
coords += surf_data[hemi]['vectors'] * t | |
nn = nn.copy() | |
nn += surf_data[hemi]['normal_vectors'] * t | |
brain._renderer.plotter.update_coordinates( | |
coords, brain._layered_meshes[hemi]._polydata, render=False) | |
brain._layered_meshes[hemi]._polydata.point_data.active_normals = nn | |
brain._layered_meshes[hemi].update_overlay('curv', opacity=0.5 + t / 2) | |
for ch, sensor_mesh in sensor_meshes.items(): | |
loc = sensor_locs[ch].copy() | |
loc += ch_pos_vectors[ch] * t * 1000 | |
brain._renderer.plotter.update_coordinates( | |
loc, sensor_mesh, render=False) | |
brain._renderer._update() | |
images.append(brain.screenshot()) | |
for i in range(5): | |
images.append(images[-1]) | |
brain.close() | |
imageio.mimwrite('inflated.mp4', images, fps=24) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment