Last active
March 31, 2020 16:40
-
-
Save alfcrisci/d5d0a9d1d02e0df9a86a667750e75c1d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# install.packages("xts","zoo","growthrates","rio","R0") | |
library(xts) | |
library(zoo) | |
library(growthrates) | |
library(rio) | |
library(R0) | |
############################################################################################################################################################################### | |
# retrieve data | |
## covid_ita_df=read.csv("https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv") | |
covid_ita_df=rio::import("https://github.com/pcm-dpc/COVID-19/raw/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv") | |
covid_ita_reg_df=rio::import("https://github.com/pcm-dpc/COVID-19/raw/master/dati-regioni/dpc-covid19-ita-regioni.csv") | |
covid_ita_pro_df=rio::import("https://github.com/pcm-dpc/COVID-19/raw/master/dati-province/dpc-covid19-ita-province.csv") | |
dates=as.Date(covid_ita_df$data) | |
datej=as.numeric(format(dates,"%j")) | |
Ratio_casi_tamponi=covid_ita_df$totale_casi/covid_ita_df$tamponi | |
plot(xts(Ratio_casi_tamponi,order.by=as.Date(dates)),main="Ratio casi totali vs tamponi") | |
covid_ita_reg_ls_regioni=split(covid_ita_reg_df,covid_ita_reg_df$codice_regione) | |
covid_ita_reg_ls_province=split(covid_ita_pro_df,covid_ita_pro_df$codice_provincia) | |
covid_ita_reg_df_Toscana=covid_ita_reg_df[covid_ita_reg_df$denominazione_regione=="Toscana",] | |
covid_ita_reg_df_Lomb=covid_ita_reg_df[covid_ita_reg_df$denominazione_regione=="Lombardia",] | |
day_biased= 34 | |
bias_34=115 | |
covid_ita_reg_df_Toscana$totale_casi[(day_biased-8):(day_biased-1)]=covid_ita_reg_df_Toscana$totale_casi[(day_biased-8):(day_biased-1)]-16.4285 | |
#covid_ita_reg_df_Toscana$totale_casi[1]=1 | |
############################################################################################################################# | |
## The reproductive number R0 of COVID-19 based on estimate of a statistical time delay dynamical system | |
## Nian Shao, Jin Cheng, Wenbin Chen | |
## doi: https://doi.org/10.1101/2020.02.17.20023747 | |
# n=5,alpha=2/3 | |
mGT <- generation.time("gamma", c(7.5,11.25)) | |
EG <- est.R0.EG(covid_ita_df$totale_casi, mGT) | |
EGtosc <- est.R0.EG(covid_ita_reg_df_Toscana$totale_casi, mGT) | |
EGlomb <- est.R0.EG(covid_ita_reg_df_Lomb$totale_casi, mGT) | |
SB <- est.R0.SB(covid_ita_df$totale_casi, mGT) | |
SBtosc <- est.R0.SB(covid_ita_reg_df_Toscana$totale_casi, mGT) | |
SBlomb <- est.R0.SB(covid_ita_reg_df_Lomb$totale_casi, mGT) | |
# res <- get_R(covid_ita_reg_df_Toscana$totale_casi,si_mean=7.5,si_sd=11.5) | |
# plot(res,"lambdas") | |
kfit <- fit_easylinear(datej, covid_ita_df$totale_casi) | |
kfittosc <- fit_easylinear(datej[-1], covid_ita_reg_df_Toscana$totale_casi[-1]) | |
kfitlomb <- fit_easylinear(datej, covid_ita_reg_df_Lomb$totale_casi) | |
############################################################################################################################################################################### | |
# Italia | |
covid_ita_cases <- data.frame(growth_TC=covid_ita_df$totale_casi, days=datej) | |
covid.ss.ita <- nls(growth_TC ~ SSlogis(datej, phi1, phi2, phi3), data =covid_ita_cases) | |
alpha <- coef(covid.ss.ita) #extracting coefficients | |
plot(growth_TC ~ days, data =covid_ita_cases, main = "Covid 19 total cases\n in Italy since 2020-02-24 \n Italian Civil Protection", | |
xlab = "Day of Year", ylab = "T cases", xlim = c(55, 140), ylim = c(0, alpha[1]+2000)) # | |
curve(SSlogis(x, alpha[1],alpha[2],alpha[3]), add = T, col = "red") | |
#curve(alpha[1]/(1 + exp(-(x - alpha[2])/alpha[3])), add = T, col = "red") # Fitted model | |
abline(h =alpha[1], col="green") | |
alpha.ita <- coef(covid.ss.ita) #extracting coefficients | |
K_ita=alpha.ita[1] | |
r_ita=1/alpha.ita[3] | |
doubletime_ita=log(2)/r_ita | |
datepeakn=match(1,ifelse(SSlogis(1:130,alpha[1],alpha[2],alpha[3])-as.numeric(K_ita)>-20,1,0)) | |
datepeak=seq.Date(as.Date("2020-01-01"),as.Date("2020-12-31"),1)[datepeakn] | |
points(tail(datej)[6],tail(covid_ita_df$totale_casi)[6],col="red") | |
abline(h =alpha[1], col="green") | |
text(datepeakn,100,datepeak) | |
abline(v =datepeakn, col="green") | |
prev=SSlogis(tail(datej)[6]+1, alpha[1],alpha[2],alpha[3])-tail(covid_ita_df$totale_casi)[6] | |
text(tail(datej)[6]-10,alpha[1]-3000,paste("Per ",as.Date(tail(covid_ita_df$data)[6])+1 ," +", floor(prev)," nuovi casi"),col="red") | |
fitl <- fit_easylinear(datej, covid_ita_df$totale_casi) | |
p <- c(y0 = as.numeric(coef(fitl)[2]), mumax =as.numeric(coef(fitl)[3]),K = as.numeric(coef(fitl)[4])) | |
fitg <- fit_growthmodel(FUN = grow_logistic,p=p, datej, covid_ita_df$totale_casi) | |
############################################################################################################################################################################### | |
# Toscana | |
covid_tosc_cases <- data.frame(growth_TC=covid_ita_reg_df_Toscana$totale_casi, days=datej) | |
#covid_tosc_cases=covid_tosc_cases[1:25,] | |
covid.ss <- nls(growth_TC ~ SSlogis(days, phi1, phi2, phi3), data =covid_tosc_cases) | |
alpha <- coef(covid.ss) #extracting coefficients | |
plot(growth_TC ~ days, data =covid_tosc_cases, main = "Covid 19 total cases\n in Tuscany since 2020-02-24 \n Italian Civil Protection", | |
xlab = "Day of Year", ylab = "T cases", xlim = c(55, 130), ylim = c(0, alpha[1]+2000)) # | |
curve(SSlogis(x, alpha[1],alpha[2],alpha[3]), add = T, col = "red") | |
#curve(alpha[1]/(1 + exp(-(x - alpha[2])/alpha[3])), add = T, col = "red") # Fitted model | |
abline(h =alpha[1], col="green") | |
alpha.tosc <- coef(covid.ss) #extracting coefficients | |
K_tosc=alpha.tosc[1] | |
r_tosc=1/alpha.tosc[3] | |
doubletime_tosc=log(2)/r_tosc | |
datepeakn=match(1,ifelse(SSlogis(1:130,alpha[1],alpha[2],alpha[3])-as.numeric(K_tosc)>-20,1,0)) | |
datepeak=seq.Date(as.Date("2020-01-01"),as.Date("2020-12-31"),1)[datepeakn] | |
points(tail(datej)[6],tail(covid_ita_reg_df_Toscana$totale_casi)[6],col="red") | |
abline(h =alpha[1], col="green") | |
text(datepeakn,100,datepeak) | |
abline(v =datepeakn, col="green") | |
abline(v =tail(datej,1), col="orange") | |
text(tail(datej,1),100,tail(dates,1)) | |
#text(tail(datej)[6]-10,alpha[1]-300,paste("Per ",as.Date(tail(covid_ita_reg_df_Toscana$data)[6])+1 ," +", floor(prev)," nuovi casi"),col="red") | |
plot(diff(covid_tosc_cases$growth_TC)~covid_tosc_cases$days[2:nrow(covid_tosc_cases)], | |
xlab = "Day of Year", ylab = "T cases", xlim = c(55, 130), | |
main = "Covid 19 daily variation in total cases\n in Tuscany since 2020-02-24 \n Italian Civil Protection") | |
lines(c(56:130),diff(SSlogis(c(55:130), alpha[1],alpha[2],alpha[3])), col = "orange") | |
text(datepeakn,100,datepeak) | |
abline(v =datepeakn, col="green") | |
abline(v =tail(datej,1), col="orange") | |
text(tail(datej,1),100,tail(dates,1)) | |
Ratio_casi_tamponi=covid_ita_reg_df_Toscana$totale_casi/covid_ita_reg_df_Toscana$tamponi | |
plot(xts(Ratio_casi_tamponi,order.by=as.Date(dates)),main="Ratio casi totali vs tamponi Toscana") | |
Tamponi=c(0,diff(covid_ita_reg_df_Toscana$tamponi)) | |
plot(xts(Tamponi,order.by=as.Date(dates)),main="Tamponi giornalieri in Toscana") | |
fitl <- fit_easylinear(datej, covid_ita_reg_df_Toscana$totale_casi) | |
p <- c(y0 = as.numeric(coef(fitl)[2]), mumax =as.numeric(coef(fitl)[3]),K = as.numeric(coef(fitl)[4])) | |
fitg <- fit_growthmodel(FUN = grow_logistic,p=p, datej, covid_ita_reg_df_Toscana$totale_casi) | |
############################################################################################################################################################################### | |
# Lombardia | |
covid_lomb_cases <- data.frame(growth_TC=covid_ita_reg_df_Lomb$totale_casi, days=datej) | |
#covid_lomb_cases=covid_lomb_cases[1:25,] | |
covid.ss <- nls(growth_TC ~ SSlogis(days, phi1, phi2, phi3), data =covid_lomb_cases) | |
alpha <- coef(covid.ss) #extracting coefficients | |
plot(growth_TC ~ days, data =covid_lomb_cases, main = "Covid 19 total cases\n in Lombardy since 2020-02-24 \n Italian Civil Protection", | |
xlab = "Day of Year", ylab = "T cases", xlim = c(55, 130), ylim = c(0, alpha[1]+2000)) # | |
curve(SSlogis(x, alpha[1],alpha[2],alpha[3]), add = T, col = "red") | |
#curve(alpha[1]/(1 + exp(-(x - alpha[2])/alpha[3])), add = T, col = "red") # Fitted model | |
abline(h =alpha[1], col="green") | |
alpha.lomb <- coef(covid.ss) #extracting coefficients | |
K_lomb=alpha.lomb[1] | |
r_lomb=1/alpha.lomb[3] | |
doubletime_lomb=log(2)/r_lomb | |
datepeakn=match(1,ifelse(SSlogis(1:130,alpha[1],alpha[2],alpha[3])-as.numeric(K_lomb)>-20,1,0)) | |
datepeak=seq.Date(as.Date("2020-01-01"),as.Date("2020-12-31"),1)[datepeakn] | |
abline(h =alpha[1], col="green") | |
text(datepeakn,100,datepeak) | |
abline(v =datepeakn, col="green") | |
points(tail(datej)[6],tail(covid_ita_reg_df_Lomb$totale_casi)[6],col="red") | |
prev=SSlogis(tail(datej)[6]+1, alpha[1],alpha[2],alpha[3])-tail(covid_ita_reg_df_Lomb$totale_casi)[6] | |
text(tail(datej)[6]-10,alpha[1]-1000,paste("Per ",as.Date(tail(covid_ita_reg_df_Lomb$data)[6])+1 ," +", floor(prev)," nuovi casi"),col="red") | |
fitl <- fit_easylinear(datej, covid_ita_reg_df_Lomb$totale_casi) | |
p <- c(y0 = as.numeric(coef(fitl)[2]), mumax =as.numeric(coef(fitl)[3]),K = as.numeric(coef(fitl)[4])) | |
fitg <- fit_growthmodel(FUN = grow_logistic,p=p, datej, covid_ita_reg_df_Lomb$totale_casi) | |
############################################################################################################### | |
covid_ita_reg_df_sard=covid_ita_reg_df[covid_ita_reg_df$denominazione_regione=="Sardegna",] | |
covid_sard_cases <- data.frame(growth_TC=covid_ita_reg_df_sard$totale_casi, days=datej) | |
covid.ss <- nls(growth_TC ~ SSlogis(days, phi1, phi2, phi3), data =covid_sard_cases) | |
alpha <- coef(covid.ss) #extracting coefficients | |
plot(growth_TC ~ days, data =covid_sard_cases, main = "Covid 19 total cases\n in Sardinia since 2020-02-24 \n Italian Civil Protection", | |
xlab = "Day of Year", ylab = "T cases", xlim = c(55, 130), ylim = c(0, alpha[1]+alpha[1]*0.3)) # | |
curve(SSlogis(x, alpha[1],alpha[2],alpha[3]), add = T, col = "red") | |
#curve(alpha[1]/(1 + exp(-(x - alpha[2])/alpha[3])), add = T, col = "red") # Fitted model | |
abline(h =alpha[1], col="green") | |
alpha.sard<- coef(covid.ss) #extracting coefficients | |
K_lomb=alpha.sard[1] | |
r_sard=1/alpha.sard[3] | |
doubletime_sard=log(2)/r_sard | |
datepeakn=match(1,ifelse(SSlogis(1:130,alpha[1],alpha[2],alpha[3])-as.numeric(K_lomb)>-20,1,0)) | |
datepeak=seq.Date(as.Date("2020-01-01"),as.Date("2020-12-31"),1)[datepeakn] | |
abline(h =alpha[1], col="green") | |
text(datepeakn,100,datepeak) | |
abline(v =datepeakn, col="green") | |
points(tail(datej)[6],tail(covid_ita_reg_df_sard$totale_casi)[6],col="red") | |
prev=SSlogis(tail(datej)[6]+1, alpha[1],alpha[2],alpha[3])-tail(covid_ita_reg_df_sard$totale_casi)[6] | |
text(tail(datej)[6]-10,alpha[1]-alpha[1]*0.2,paste("Per ",as.Date(tail(covid_ita_reg_df_sard$data)[6])+1 ," +", floor(prev)," nuovi casi"),col="red") | |
fitl <- fit_easylinear(datej, covid_ita_reg_df_sard$totale_casi) | |
covid.ss <- nls(growth_TC ~ SSlogis(days, phi1, phi2, phi3), data =covid_sard_cases) | |
alpha <- coef(covid.ss) #extracting coefficients | |
############################################################################################################### | |
# plot of tampons | |
covid <- xts(x = covid_ita_df[,5:12], order.by = as.Date(covid_ita_df$data)) | |
plot(covid[,"Tamponi effettuati"]) | |
############################################################################################################### | |
# reference | |
# https://www.statforbiology.com/nonlinearregression/usefulequations |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment