Last active
May 15, 2022 11:42
-
-
Save alfredplpl/f721a07aa6e07f47909866bb9c4409e0 to your computer and use it in GitHub Desktop.
Digit Generation by DDPM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.utils.data import Dataset | |
from torchvision import datasets, transforms | |
import torch.optim as optim | |
import cv2 | |
from tqdm import tqdm | |
from denoising_diffusion_pytorch import Unet, GaussianDiffusion | |
import numpy as np | |
class Mydataset(Dataset): | |
def __init__(self, mnist_data): | |
self.mnist = mnist_data | |
def __len__(self): | |
return len(self.mnist) | |
def __getitem__(self, idx): | |
X = self.mnist[idx][0] | |
X = (X * 2) - 1 | |
y = self.mnist[idx][1] | |
return X, y | |
mnist_data = datasets.MNIST('.', | |
transform = transforms.Compose([ | |
transforms.Resize(32,transforms.InterpolationMode.NEAREST), | |
transforms.ToTensor() | |
]), | |
download=True) | |
mnist_data_norm = Mydataset(mnist_data) | |
dataloader = torch.utils.data.DataLoader(mnist_data_norm, | |
batch_size=512, | |
shuffle=True) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = Unet( | |
dim = 16, | |
dim_mults = (1, 2, 4, 8), | |
channels=1 | |
).to(device) | |
diffusion = GaussianDiffusion( | |
model, | |
image_size = 32, | |
timesteps = 1000, # number of steps | |
loss_type = 'l1', | |
channels=1 | |
).to(device) | |
optimizer = optim.Adam(diffusion.parameters()) | |
for epoch in range(2000): | |
for i, data in enumerate(tqdm(dataloader), 0): | |
optimizer.zero_grad() | |
batch = data[0].to(device) | |
loss = diffusion(batch) | |
loss.backward() | |
optimizer.step() | |
imgs = diffusion.sample(batch_size = 16) | |
imgs = imgs.cpu() | |
imgs_img = np.empty((4 * imgs.shape[2], 4 * imgs.shape[3]), dtype=np.float32) | |
for y in range(4): | |
for x in range(4): | |
imgs_img[y * 32:(y + 1) * 32, x * 32:(x + 1) * 32] = imgs[y*4+x] | |
imgs_img = np.array(imgs_img * 255, dtype=np.uint8) | |
cv2.imwrite(f"./MNIST/ddpm_{epoch}.bmp", imgs_img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment