Last active
May 16, 2022 21:57
-
-
Save alfredplpl/f91fb2ed93f021929701ac8e3758754f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import copy | |
import torch | |
from denoising_diffusion_pytorch import Unet, GaussianDiffusion, Trainer | |
from torchvision import datasets, transforms | |
from torch.optim import Adam | |
from torch.utils.data import Dataset | |
from torch.utils import data | |
from torch.cuda.amp import GradScaler | |
from pathlib import Path | |
def cycle(dl): | |
while True: | |
for data in dl: | |
yield data | |
class EMA(): | |
def __init__(self, beta): | |
super().__init__() | |
self.beta = beta | |
def update_model_average(self, ma_model, current_model): | |
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()): | |
old_weight, up_weight = ma_params.data, current_params.data | |
ma_params.data = self.update_average(old_weight, up_weight) | |
def update_average(self, old, new): | |
if old is None: | |
return new | |
return old * self.beta + (1 - self.beta) * new | |
class Mydataset(Dataset): | |
def __init__(self, mnist_data): | |
self.mnist = mnist_data | |
def __len__(self): | |
return len(self.mnist) | |
def __getitem__(self, idx): | |
X = self.mnist[idx][0] | |
X = (X * 2) - 1 | |
y = self.mnist[idx][1] | |
X=torch.Tensor(X) | |
return X | |
class CutomTrainer(Trainer): | |
def __init__( | |
self, | |
diffusion_model, | |
ema_decay = 0.995, | |
image_size = 32, | |
train_batch_size = 32, | |
train_lr = 2e-5, | |
train_num_steps = 100000, | |
gradient_accumulate_every = 2, | |
amp = False, | |
step_start_ema = 2000, | |
update_ema_every = 10, | |
save_and_sample_every = 1000, | |
results_folder = './results' | |
): | |
self.model = diffusion_model | |
self.ema = EMA(ema_decay) | |
self.ema_model = copy.deepcopy(self.model) | |
self.update_ema_every = update_ema_every | |
self.step_start_ema = step_start_ema | |
self.save_and_sample_every = save_and_sample_every | |
self.batch_size = train_batch_size | |
self.image_size = diffusion_model.image_size | |
self.gradient_accumulate_every = gradient_accumulate_every | |
self.train_num_steps = train_num_steps | |
mnist_data = datasets.MNIST('.', | |
transform=transforms.Compose([ | |
transforms.Resize(image_size, transforms.InterpolationMode.NEAREST), | |
transforms.ToTensor() | |
]), | |
download=True) | |
self.ds = Mydataset(mnist_data) | |
self.dl = cycle(data.DataLoader(self.ds, batch_size = train_batch_size, shuffle=True, pin_memory=True)) | |
self.opt = Adam(diffusion_model.parameters(), lr=train_lr) | |
self.step = 0 | |
self.amp = amp | |
self.scaler = GradScaler(enabled = amp) | |
self.results_folder = Path(results_folder) | |
self.results_folder.mkdir(exist_ok = True) | |
self.reset_parameters() | |
model = Unet( | |
dim = 32, | |
dim_mults = (1, 2, 4, 8, 16), | |
channels=1 | |
).cuda() | |
diffusion = GaussianDiffusion( | |
model, | |
image_size = 32, | |
timesteps = 1000, # number of steps | |
loss_type = 'l1', | |
channels=1 | |
).cuda() | |
trainer = CutomTrainer( | |
diffusion, | |
train_batch_size = 256, | |
train_lr = 2e-5, | |
train_num_steps = 700000, # total training steps | |
gradient_accumulate_every = 2, # gradient accumulation steps | |
ema_decay = 0.995, # exponential moving average decay | |
save_and_sample_every=70 | |
) | |
trainer.train() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment