Created
May 10, 2022 19:52
-
-
Save ali-john/3224566d11cc76bc37ce90b29657f160 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 as opencv | |
import random as r | |
def neighbours(i, j, src): | |
# left | |
left = src[i, j - 1] | |
# top | |
top = src[i - 1, j] | |
# even diagonal | |
diagE = src[i - 1, j - 1] | |
# odd diagonal | |
diagO = src[i - 1, j + 1] | |
neighbour_array = [diagE, top, diagO, left] | |
return neighbour_array | |
def Singlelabel(inputArr): | |
output = 0 | |
for i in range(len(inputArr)): | |
if inputArr[i] != 0: | |
output = inputArr[i] | |
break | |
return output | |
def haveSameLabels(inputArr): | |
temp = [] | |
for i in range(len(inputArr)): | |
if inputArr[i] != 0: | |
temp.append(inputArr[i]) | |
x = True | |
for i in range(1, len(temp)): | |
if temp[i] != temp[i - 1]: | |
x = False | |
return x | |
def MinMaxVal(inputArr): | |
temp = [] | |
for i in range(len(inputArr)): | |
if inputArr[i] != 0: | |
temp.append(inputArr[i]) | |
output = [min(temp), max(temp)] | |
return output | |
def colorObjects(labels): | |
uniquelabels = np.unique(labels) | |
colors = {1: (128, 0, 0), 2: (255, 255, 0), 3: (0, 255, 255), 4: (0, 255, 150), 5: (100, 128, 210)} | |
colored_output = opencv.cvtColor(labels, opencv.COLOR_GRAY2BGR) | |
for i in uniquelabels: | |
if i == 0: | |
continue | |
else: | |
x = r.randint(1, 5) | |
for j in range(labels.shape[0]): | |
for k in range(labels.shape[1]): | |
if labels[j, k] == i: | |
colored_output[j, k] = colors.get(x) | |
return colored_output | |
def connectedComponentAnalysis(inputImg, Vset, start): | |
vset = Vset | |
# first pass | |
label = np.zeros([inputImg.shape[0], inputImg.shape[1]], dtype="uint8") | |
new_label = 0 | |
link = {} | |
for i in range(start, inputImg.shape[0] - start): | |
for j in range(start, inputImg.shape[1] - start): | |
if inputImg[i, j] == vset: | |
# no object | |
current_neighbors = neighbours(i, j, label) | |
if np.count_nonzero(current_neighbors) == 0: | |
new_label += 1 | |
inputImg[i, j] = new_label | |
label[i, j] = new_label | |
link[new_label] = new_label | |
# only one object - copy its label | |
elif np.count_nonzero(current_neighbors) == 1: | |
label[i, j] = Singlelabel(current_neighbors) | |
# more than one object | |
elif np.count_nonzero(current_neighbors) > 1: | |
# objects have same labels | |
if haveSameLabels(current_neighbors): | |
label[i, j] = Singlelabel(current_neighbors) | |
# objects have different labels. Copy smallest label, replace largest label with smallest one | |
else: | |
label[i, j] = MinMaxVal(current_neighbors)[0] | |
link[(MinMaxVal(current_neighbors)[1])] = MinMaxVal(current_neighbors)[0] | |
# Pass 2 | |
# Update link list. | |
for key, value in link.items(): | |
if value == key: | |
continue | |
else: | |
value = key | |
temp = link.get(value) | |
while value != temp: | |
value = link.get(value) | |
temp = link.get(value) | |
link[key] = value | |
# Update labels | |
for i in range(start, label.shape[0] - start): | |
for j in range(start, label.shape[1] - start): | |
if label[i, j] != 0: | |
label[i, j] = link.get(label[i, j]) | |
# Count objects | |
obj = len(np.unique(label)) | |
return obj - 1, label |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment