Skip to content

Instantly share code, notes, and snippets.

@alirezamika
Last active December 27, 2020 10:04
Show Gist options
  • Save alirezamika/65e9597d3d18dda8cab6e20126383c07 to your computer and use it in GitHub Desktop.
Save alirezamika/65e9597d3d18dda8cab6e20126383c07 to your computer and use it in GitHub Desktop.
import random
from q import Q
from tictactoe import TicTacToe
class Agent:
def __init__(self):
self.eps = 1.0
self.qlearner = Q()
def _get_action(self, state, valid_actions):
if random.random() < self.eps:
return random.choice(valid_actions)
best = self.qlearner.get_best_action(state)
if best is None:
return random.choice(valid_actions)
return best
def _learn_one_game(self):
game = TicTacToe(render=False)
while True:
state = game.get_state()
action = self._get_action(state, game.get_valid_actions())
winner = game.play(*action)
if winner or game.is_ended():
self.qlearner.update(state, action, game.get_state(), 100)
break
winner = game.play(*random.choice(game.get_valid_actions()))
if winner or game.is_ended():
self.qlearner.update(state, action, game.get_state(), -100)
break
self.qlearner.update(state, action, game.get_state(), 0)
def learn(self, n=20000):
for _ in range(n):
self._learn_one_game()
self.eps -= 0.0001
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment