Last active
June 19, 2020 10:31
-
-
Save aliwaqas333/bef23823e9d2254d7b28127df2fcd76e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@torch.no_grad() | |
def evaluate(model, val_loader): | |
model.eval() | |
outputs = [model.validation_step(batch) for batch in val_loader] | |
return model.validation_epoch_end(outputs) | |
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): | |
history = [] | |
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) | |
for epoch in range(epochs): | |
# Training Phase | |
print('epoch: ', epoch) | |
model.train() | |
train_losses = [] | |
for batch in train_loader: | |
loss = model.training_step(batch) | |
train_losses.append(loss) | |
loss.backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
# Validation phase | |
result = evaluate(model, val_loader) | |
result['train_loss'] = torch.stack(train_losses).mean().item() | |
model.epoch_end(epoch, result) | |
history.append(result) | |
return history | |
# Model (on GPU) | |
model = MaskDetection() | |
# model.load_state_dict(torch.load('../output/MaskDetection.pth')) | |
to_device(model, device) | |
history = [evaluate(model, val_dl)] | |
history | |
history = fit(5, 1e-3, model, train_dl, val_dl) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment