Created
July 10, 2017 00:03
-
-
Save aljce/07ed136b1a1368f2e1034c061cf2f33e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Id where | |
open import Agda.Builtin.Nat | |
open import Agda.Builtin.Equality | |
sym : ∀ {A} {x y : A} -> x ≡ y -> y ≡ x | |
sym refl = refl | |
_qed : ∀ {A} -> (x : A) -> x ≡ x | |
_ qed = refl | |
infixr 2 _<_>_ | |
_<_>_ : ∀ {A} {y z : A} -> (x : A) -> x ≡ y -> y ≡ z -> x ≡ z | |
_ < refl > refl = refl | |
cong : ∀ {A B} {a b : A} (f : A -> B) -> a ≡ b -> f a ≡ f b | |
cong _ refl = refl | |
plusRightZero : (n : Nat) -> n ≡ n + zero | |
plusRightZero zero = refl | |
plusRightZero (suc n) = cong suc (plusRightZero n) | |
plusRightSuc : (n m : Nat) -> suc n + m ≡ n + suc m | |
plusRightSuc zero m = refl | |
plusRightSuc (suc n) m = cong suc (plusRightSuc n m) | |
plusComm : (n m : Nat) -> n + m ≡ m + n | |
plusComm zero m = plusRightZero m | |
plusComm (suc n) m = | |
suc (n + m) < cong suc (plusComm n m) > | |
suc (m + n) < plusRightSuc m n > | |
(m + suc n) qed | |
plusAssoc : (n m o : Nat) -> n + (m + o) ≡ (n + m) + o | |
plusAssoc zero m o = refl | |
plusAssoc (suc n) m o = cong suc (plusAssoc n m o) | |
mulComm : (n m : Nat) -> n * m ≡ m * n | |
mulComm zero m = {!!} | |
mulComm (suc n) m = {!!} | |
-- mulAssoc : (n m o : Nat) -> n * (m * o) ≡ (n * m) * o | |
-- mulAssoc zero m o = refl | |
-- mulAssoc (suc n) m o = | |
-- m * o + n * (m * o) < cong (λ x → m * o + x) (mulAssoc n m o) > | |
-- m * o + n * m * o < {!!} > | |
-- {!!} < {!!} > | |
-- ((m + n * m) * o) qed | |
mulDistOverPlus : (n m o : Nat) -> n * (m + o) ≡ n * m + n * o | |
mulDistOverPlus zero m o = refl | |
mulDistOverPlus (suc n) m o = | |
m + o + n * (m + o) < cong (λ x → m + o + x) (mulDistOverPlus n m o) > | |
m + o + (n * m + n * o) < sym (plusAssoc m o (n * m + n * o)) > | |
m + (o + (n * m + n * o)) < cong (λ x → m + x) (plusAssoc o (n * m) (n * o)) > | |
m + (o + n * m + n * o) < cong (λ x → m + (x + n * o)) (plusComm o (n * m)) > | |
m + ((n * m + o) + n * o) < cong (λ x → m + x) (sym (plusAssoc (n * m) o (n * o))) > | |
m + (n * m + (o + n * o)) < plusAssoc m (n * m) (o + n * o) > | |
(m + n * m + (o + n * o)) qed | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment