Created
November 22, 2017 23:25
-
-
Save aljce/aa39c2eb3abd00b59cf18af9d0feff94 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Chapter2 where | |
open import Agda.Builtin.FromNat | |
open import Data.Nat using (ℕ; zero; suc) | |
open import Data.Unit | |
open import Data.Sum | |
open import Data.Product | |
open import Relation.Nullary using (Dec; yes; no) | |
open import Relation.Binary.Core using (Decidable) | |
open import Relation.Binary.PropositionalEquality | |
open ≡-Reasoning | |
-- postulate | |
-- trustMe : ∀ {A : Set} {x y : A} -> x ≡ y | |
negsym : ∀ {A : Set} {x y : A} -> x ≢ y -> y ≢ x | |
negsym x≢y = λ x≡y → x≢y (sym x≡y) | |
Op : Set -> Set | |
Op A = A -> A | |
Op₂ : Set -> Set | |
Op₂ A = A -> A -> A | |
record Identity {A : Set} (_·_ : Op₂ A) (e : A) : Set where | |
field | |
left-identity : ∀ (x : A) -> e · x ≡ x | |
right-identity : ∀ (x : A) -> x · e ≡ x | |
uniquness-of-identities : ∀ {A : Set} {_·_ : Op₂ A} {e f : A} -> Identity _·_ e -> Identity _·_ f -> e ≡ f | |
uniquness-of-identities {A} {_·_} {e} {f} identity1 identity2 = | |
e ≡⟨ sym (right-identity identity2 e) ⟩ | |
e · f ≡⟨ left-identity identity1 f ⟩ | |
f ∎ | |
where open Identity | |
record Inverse {A : Set} (_·_ : Op₂ A) (P : A -> Set) (_⁻¹ : ∃ P -> ∃ P) (e : A) : Set where | |
field | |
left-inverse : ∀ (x : ∃ P) -> proj₁ x · proj₁ (x ⁻¹) ≡ e | |
right-inverse : ∀ (x : ∃ P) -> proj₁ (x ⁻¹) · proj₁ x ≡ e | |
Associative : ∀ {A : Set} (_·_ : Op₂ A) -> Set | |
Associative {A} _·_ = (a b c : A) -> a · (b · c) ≡ (a · b) · c | |
module Inverse-Theorems | |
{A : Set} {_·_ : Op₂ A} {P : A -> Set} {_⁻¹ : ∃ P -> ∃ P} {e : A} | |
(assoc : Associative _·_) (identity : Identity _·_ e) (inverse : Inverse _·_ P _⁻¹ e) | |
where | |
open Identity identity | |
open Inverse inverse | |
double-inverse : ∀ (x : ∃ P) -> proj₁ ((x ⁻¹) ⁻¹) ≡ proj₁ x | |
double-inverse x = | |
proj₁ ((x ⁻¹) ⁻¹) ≡⟨ sym (right-identity _) ⟩ | |
proj₁ ((x ⁻¹) ⁻¹) · e ≡⟨ cong (λ t → _ · t) (sym (right-inverse _)) ⟩ | |
proj₁ ((x ⁻¹) ⁻¹) · (proj₁ (x ⁻¹) · proj₁ x) ≡⟨ assoc _ _ _ ⟩ | |
(proj₁ ((x ⁻¹) ⁻¹) · proj₁ (x ⁻¹)) · proj₁ x ≡⟨ cong (λ t → t · _) (right-inverse _) ⟩ | |
e · proj₁ x ≡⟨ left-identity _ ⟩ | |
proj₁ x ∎ | |
right-cancellation : ∀ (x y : A) (v : ∃ P) -> x · proj₁ v ≡ y · proj₁ v -> x ≡ y | |
right-cancellation x y v x·v≡y·v = | |
x ≡⟨ sym (right-identity _) ⟩ | |
x · e ≡⟨ cong (λ t → _ · t) (sym (left-inverse _)) ⟩ | |
x · (proj₁ v · proj₁ (v ⁻¹)) ≡⟨ assoc _ _ _ ⟩ | |
(x · proj₁ v) · proj₁ (v ⁻¹) ≡⟨ cong (λ t → t · _) x·v≡y·v ⟩ | |
(y · proj₁ v) · proj₁ (v ⁻¹) ≡⟨ sym (assoc _ _ _) ⟩ | |
y · (proj₁ v · proj₁ (v ⁻¹)) ≡⟨ cong (λ t → _ · t) (left-inverse _) ⟩ | |
y · e ≡⟨ right-identity _ ⟩ | |
y ∎ | |
left-cancellation : ∀ (x y : A) (v : ∃ P) -> proj₁ v · x ≡ proj₁ v · y -> x ≡ y | |
left-cancellation x y v v·x≡v·y = | |
x ≡⟨ sym (left-identity _) ⟩ | |
e · x ≡⟨ cong (λ t → t · _) (sym (right-inverse _)) ⟩ | |
(proj₁ (v ⁻¹) · proj₁ v) · x ≡⟨ sym (assoc _ _ _) ⟩ | |
proj₁ (v ⁻¹) · (proj₁ v · x) ≡⟨ cong (λ t → _ · t) v·x≡v·y ⟩ | |
proj₁ (v ⁻¹) · (proj₁ v · y) ≡⟨ assoc _ _ _ ⟩ | |
(proj₁ (v ⁻¹) · proj₁ v) · y ≡⟨ cong (λ t → t · _) (right-inverse _) ⟩ | |
e · y ≡⟨ left-identity _ ⟩ | |
y ∎ | |
identity-inverse : (identity-proof : P e) -> proj₁ ((e , identity-proof) ⁻¹) ≡ e | |
identity-inverse identity-proof = | |
proj₁ ((e , identity-proof) ⁻¹) ≡⟨ sym (right-identity _) ⟩ | |
proj₁ ((e , identity-proof) ⁻¹) · e ≡⟨ right-inverse _ ⟩ | |
e ∎ | |
Commutative : ∀ {A : Set} (_·_ : Op₂ A) -> Set | |
Commutative {A} (_·_) = ∀ (x y : A) -> x · y ≡ y · x | |
always : ∀ {A : Set} -> A -> Set | |
always _ = ⊤ | |
record Field {F : Set} : Set where | |
infixl 6 _+_ | |
infixl 7 _·_ | |
infix 8 -_ | |
infix 8 _⁻¹ | |
field | |
_+_ : Op₂ F | |
+-assoc : Associative _+_ | |
0# : F | |
+-identity : Identity _+_ 0# | |
-_ : ∃ always -> ∃ always | |
+-inverse : Inverse _+_ always -_ 0# | |
_·_ : Op₂ F | |
·-comm : Commutative _·_ | |
·-assoc : Associative _·_ | |
1# : F | |
·-identity : Identity _·_ 1# | |
_⁻¹ : ∃ (λ x -> x ≢ 0#) -> ∃ (λ x -> x ≢ 0#) | |
·-inverse : Inverse _·_ (λ x -> x ≢ 0#) _⁻¹ 1# | |
·-+-dist : ∀ (x y z : F) -> x · (y + z) ≡ (x · y) + (x · z) | |
0≢1 : 0# ≢ 1# | |
module Field-Theorems {F : Set} (f : Field {F}) where | |
open Field f hiding (-_) | |
open Identity +-identity | |
renaming ( left-identity to +-left-identity ; right-identity to +-right-identity ) | |
open Identity ·-identity | |
renaming ( left-identity to ·-left-identity ; right-identity to ·-right-identity ) | |
instance | |
FieldNumber : Number F | |
FieldNumber = | |
record | |
{ Constraint = λ _ → ⊤ | |
; fromNat = natToField } | |
where | |
natToField : ℕ → {{_ : ⊤}} → F | |
natToField 0 = 0# | |
natToField 1 = 1# | |
natToField 2 = 1# + 1# | |
natToField (suc (suc n)) = (natToField n + 1#) + 1# | |
+-right-cancellation : ∀ {x y z : F} -> x + z ≡ y + z -> x ≡ y | |
+-right-cancellation {x} {y} {z} x+z≡y+z = right-cancellation x y (z , tt) x+z≡y+z | |
where open Inverse-Theorems +-assoc +-identity +-inverse | |
+-left-cancellation : ∀ {x y z : F} -> z + x ≡ z + y -> x ≡ y | |
+-left-cancellation {x} {y} {z} z+x≡z+y = left-cancellation x y (z , tt) z+x≡z+y | |
where open Inverse-Theorems +-assoc +-identity +-inverse | |
NonZero : Set | |
NonZero = ∃ (λ x -> x ≢ 0#) | |
·-right-cancellation : ∀ {x y : F} (z : NonZero) -> x · proj₁ z ≡ y · proj₁ z -> x ≡ y | |
·-right-cancellation {x} {y} = right-cancellation x y | |
where open Inverse-Theorems ·-assoc ·-identity ·-inverse | |
·-left-cancellation : ∀ {x y : F} (z : NonZero) -> proj₁ z · x ≡ proj₁ z · y -> x ≡ y | |
·-left-cancellation {x} {y} = left-cancellation x y | |
where open Inverse-Theorems ·-assoc ·-identity ·-inverse | |
-_ : F -> F | |
- x = proj₁ (Field.-_ f (x , tt)) | |
0-inverse : - 0 ≡ 0 | |
0-inverse = identity-inverse _ | |
where open Inverse-Theorems +-assoc +-identity +-inverse | |
1-inverse : proj₁ ((1 , negsym 0≢1) ⁻¹) ≡ 1 | |
1-inverse = identity-inverse (negsym 0≢1) | |
where open Inverse-Theorems ·-assoc ·-identity ·-inverse | |
+-double-inverse : ∀ (x : F) -> - (- x) ≡ x | |
+-double-inverse x = double-inverse (x , tt) | |
where open Inverse-Theorems +-assoc +-identity +-inverse | |
·-double-inverse : ∀ (x : NonZero) -> proj₁ ((x ⁻¹) ⁻¹) ≡ proj₁ x | |
·-double-inverse = double-inverse | |
where open Inverse-Theorems ·-assoc ·-identity ·-inverse | |
·-zero : ∀ (x : F) -> x · 0 ≡ 0 | |
·-zero x = +-left-cancellation lemma | |
where | |
lemma : x · 0 + x · 0 ≡ x · 0 + 0 | |
lemma = | |
x · 0 + x · 0 ≡⟨ sym (·-+-dist _ _ _) ⟩ | |
x · (0 + 0) ≡⟨ cong (λ t → _ · t) (+-left-identity _) ⟩ | |
x · 0 ≡⟨ sym (+-right-identity _) ⟩ | |
x · 0 + 0 ∎ | |
-- This is not constructive | |
2-68 : Decidable {A = F} _≡_ -> ∀ (x y : F) -> x · y ≡ 0 -> x ≡ 0 ⊎ y ≡ 0 | |
2-68 decEq x y x·y≡0 with decEq x 0 | |
... | yes x≡0 = inj₁ x≡0 | |
... | no x≢0 = inj₂ (·-left-cancellation (x , x≢0) lemma) | |
where | |
lemma : x · y ≡ x · 0 | |
lemma = | |
x · y ≡⟨ x·y≡0 ⟩ | |
0 ≡⟨ sym (·-zero _) ⟩ | |
x · 0 ∎ | |
foil : ∀ (a b c d : F) -> (a + b) · (c + d) ≡ a · c + a · d + b · c + b · d | |
foil a b c d = | |
(a + b) · (c + d) ≡⟨ ·-comm _ _ ⟩ | |
(c + d) · (a + b) ≡⟨ ·-+-dist _ _ _ ⟩ | |
(c + d) · a + (c + d) · b ≡⟨ cong (λ x → x + (c + d) · b) (lemma c d a) ⟩ | |
a · c + a · d + (c + d) · b ≡⟨ cong (λ x → a · c + a · d + x) (lemma c d b) ⟩ | |
a · c + a · d + (b · c + b · d) ≡⟨ +-assoc _ _ _ ⟩ | |
a · c + a · d + b · c + b · d ∎ | |
where | |
lemma : ∀ (x y z : F) -> (x + y) · z ≡ z · x + z · y | |
lemma x y z = | |
(x + y) · z ≡⟨ ·-comm _ _ ⟩ | |
z · (x + y) ≡⟨ ·-+-dist _ _ _ ⟩ | |
z · x + z · y ∎ | |
+-comm : ∀ (x y : F) -> x + y ≡ y + x | |
+-comm x y = cancel (+-right-cancellation lemma) | |
where | |
cancel : 1 + x + y ≡ 1 + y + x -> x + y ≡ y + x | |
cancel eq = +-left-cancellation ( | |
1 + (x + y) ≡⟨ +-assoc _ _ _ ⟩ | |
1 + x + y ≡⟨ eq ⟩ | |
1 + y + x ≡⟨ sym (+-assoc _ _ _) ⟩ | |
1 + (y + x) ∎ ) | |
lemma : 1 + x + y + x · y ≡ 1 + y + x + x · y | |
lemma = | |
1 + x + y + x · y ≡⟨ cong (λ t -> t + x + y + x · y) (sym (·-left-identity _)) ⟩ | |
1 · 1 + x + y + x · y ≡⟨ cong (λ t -> 1 · 1 + t + y + x · y ) (sym (·-left-identity _)) ⟩ | |
1 · 1 + 1 · x + y + x · y ≡⟨ cong (λ t -> 1 · 1 + 1 · x + t + x · y) (sym (·-right-identity _)) ⟩ | |
1 · 1 + 1 · x + y · 1 + x · y ≡⟨ cong (λ t -> 1 · 1 + 1 · x + y · 1 + t) (·-comm _ _) ⟩ | |
1 · 1 + 1 · x + y · 1 + y · x ≡⟨ sym (foil 1 y 1 x) ⟩ | |
(1 + y) · (1 + x) ≡⟨ ·-comm _ _ ⟩ | |
(1 + x) · (1 + y) ≡⟨ foil 1 x 1 y ⟩ | |
1 · 1 + 1 · y + x · 1 + x · y ≡⟨ cong (λ t -> 1 · 1 + 1 · y + t + x · y) (·-right-identity _) ⟩ | |
1 · 1 + 1 · y + x + x · y ≡⟨ cong (λ t -> 1 · 1 + t + x + x · y) (·-left-identity _) ⟩ | |
1 · 1 + y + x + x · y ≡⟨ cong (λ t -> t + y + x + x · y) (·-left-identity _) ⟩ | |
1 + y + x + x · y ∎ | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment