Created
April 10, 2019 09:54
-
-
Save allanj/3b62d4451d1b259166194eaac102379f to your computer and use it in GitHub Desktop.
Script for dependency parsing for the dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package corenlp.process; | |
import java.io.BufferedReader; | |
import java.io.IOException; | |
import java.io.PrintWriter; | |
import java.util.ArrayList; | |
import java.util.List; | |
import edu.stanford.nlp.ling.CoreLabel; | |
import edu.stanford.nlp.parser.nndep.DependencyParser; | |
import edu.stanford.nlp.trees.GrammaticalStructure; | |
import edu.stanford.nlp.trees.TypedDependency; | |
import statistics.RAWF; | |
public class Converter { | |
String modelPath ; | |
public Converter(String modelPath) { | |
this.modelPath = modelPath; | |
} | |
/** | |
* Read CoNLL-2003 | |
* @param path | |
* @param writePath | |
* @throws IOException | |
*/ | |
public void readData(String path, String writePath) throws IOException{ | |
DependencyParser parser = DependencyParser.loadFromModelFile(this.modelPath); | |
BufferedReader br = RAWF.reader(path); | |
PrintWriter pw = RAWF.writer(writePath); | |
String line = null; | |
List<CoreLabel> words = new ArrayList<>(); | |
ArrayList<String> output = new ArrayList<String>(); | |
while((line = br.readLine())!=null){ | |
if(line.equals("")){ | |
GrammaticalStructure gs = parser.predict(words); | |
List<TypedDependency> deps = new ArrayList<>(gs.typedDependencies()); | |
int[] heads = new int[words.size()]; | |
String[] depLabels = new String[words.size()]; | |
for (TypedDependency dep : deps) { | |
heads[dep.dep().index() - 1] = dep.gov().index() - 1; | |
depLabels[dep.dep().index() - 1] = dep.reln().getShortName(); | |
// System.out.println(dep.gov().index() +", " +dep.dep().index()+ ", " + dep.reln().getShortName()); | |
} | |
// System.exit(0); | |
for (int p = 0; p < words.size(); p++) { | |
CoreLabel word = words.get(p); | |
int head = heads[p] + 1; | |
pw.println((p+1) + "\t"+ word.word() + "\t_\t" +word.tag()+"\t"+word.tag()+"\t_\t"+head+"\t"+depLabels[p]+"\t_\t_\t"+output.get(p) ); | |
} | |
pw.println(); | |
words = new ArrayList<CoreLabel>(); | |
output = new ArrayList<String>(); | |
} else { | |
String[] values = line.split(" "); | |
String entity = values[2]; | |
output.add(entity); | |
CoreLabel token = new CoreLabel(); | |
token.setWord(values[0]); | |
token.setTag(values[1]); | |
words.add(token); | |
} | |
} | |
br.close(); | |
pw.close(); | |
} | |
/** | |
* Read CoNLL-2003 | |
* @param path | |
* @param writePath | |
* @throws IOException | |
*/ | |
public void readOntoNotes(String path, String writePath) throws IOException{ | |
DependencyParser parser = DependencyParser.loadFromModelFile(this.modelPath); | |
BufferedReader br = RAWF.reader(path); | |
PrintWriter pw = RAWF.writer(writePath); | |
String line = null; | |
List<CoreLabel> words = new ArrayList<>(); | |
ArrayList<String> output = new ArrayList<String>(); | |
while((line = br.readLine())!=null){ | |
if(line.equals("")){ | |
GrammaticalStructure gs = parser.predict(words); | |
List<TypedDependency> deps = new ArrayList<>(gs.typedDependencies()); | |
int[] heads = new int[words.size()]; | |
String[] depLabels = new String[words.size()]; | |
for (TypedDependency dep : deps) { | |
heads[dep.dep().index() - 1] = dep.gov().index() - 1; | |
depLabels[dep.dep().index() - 1] = dep.reln().getShortName(); | |
// System.out.println(dep.gov().index() +", " +dep.dep().index()+ ", " + dep.reln().getShortName()); | |
} | |
// System.exit(0); | |
for (int p = 0; p < words.size(); p++) { | |
CoreLabel word = words.get(p); | |
int head = heads[p] + 1; | |
pw.println((p+1) + "\t"+ word.word() + "\t_\t" +word.tag()+"\t"+word.tag()+"\t_\t"+head+"\t"+depLabels[p]+"\t_\t_\t"+output.get(p) ); | |
} | |
pw.println(); | |
words = new ArrayList<CoreLabel>(); | |
output = new ArrayList<String>(); | |
} else { | |
String[] values = line.split("\t"); | |
String word = values[1]; | |
String pos = values[3]; | |
String entity = values[values.length - 1]; | |
output.add(entity); | |
CoreLabel token = new CoreLabel(); | |
token.setWord(word); | |
token.setTag(pos); | |
words.add(token); | |
} | |
} | |
br.close(); | |
pw.close(); | |
} | |
public static void main(String... args) throws IOException { | |
String[] x = new String[]{"SD", "UD"}; | |
for(String type : x) { | |
String path = "edu/stanford/nlp/models/parser/nndep/english_"+type+".gz"; | |
Converter conv = new Converter(path); | |
// conv.readData("data/conll2003/train.txt", "data/conll2003/train."+type.toLowerCase()+".conllx"); | |
// conv.readData("data/conll2003/dev.txt", "data/conll2003/dev."+type.toLowerCase()+".conllx"); | |
// conv.readData("data/conll2003/test.txt", "data/conll2003/test."+type.toLowerCase()+".conllx"); | |
conv.readOntoNotes("data/ontonotes/train.sd.conllx", "data/ontonotes/train.pred"+type.toLowerCase()+".conllx"); | |
conv.readOntoNotes("data/ontonotes/dev.sd.conllx", "data/ontonotes/dev.pred"+type.toLowerCase()+".conllx"); | |
conv.readOntoNotes("data/ontonotes/test.sd.conllx", "data/ontonotes/test.pred"+type.toLowerCase()+".conllx"); | |
} | |
} | |
// public static void main(String... args) { | |
// String modelPath = DependencyParser.DEFAULT_MODEL; | |
// String taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger"; | |
// | |
// for (int argIndex = 0; argIndex < args.length; ) { | |
// switch (args[argIndex]) { | |
// case "-tagger": | |
// taggerPath = args[argIndex + 1]; | |
// argIndex += 2; | |
// break; | |
// case "-model": | |
// modelPath = args[argIndex + 1]; | |
// argIndex += 2; | |
// break; | |
// default: | |
// throw new RuntimeException("Unknown argument " + args[argIndex]); | |
// } | |
// } | |
// | |
// String text = "I can almost always tell when movies use fake dinosaurs."; | |
// | |
// MaxentTagger tagger = new MaxentTagger(taggerPath); | |
// | |
// | |
//// DocumentPreprocessor tokenizer = new DocumentPreprocessor(new StringReader(text)); | |
//// for (List<HasWord> sentence : tokenizer) { | |
//// List<TaggedWord> tagged = tagger.tagSentence(sentence); | |
//// GrammaticalStructure gs = parser.predict(tagged); | |
//// System.out.println(gs.toString()); | |
//// } | |
// | |
// CoreLabel token = new CoreLabel(); | |
// token.setWord("I"); | |
// token.setTag("NN"); | |
// List<CoreLabel> sent = new ArrayList<>(); | |
// sent.add(token); | |
// GrammaticalStructure gs = parser.predict(sent); | |
// System.out.println(gs.toString()); | |
// } | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment