Last active
May 10, 2020 21:37
-
-
Save allen-li1231/7f257735e5b3ff1187de555a25dfdde5 to your computer and use it in GitHub Desktop.
XGBoost model selection and fine tune from BUDT758T
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(xgboost) | |
airbnb_train <- read.csv()#TODO | |
airbnb_test <- read.csv()#TODO | |
train_test_split <- function(df, split_ = 0.7, seed_ = NULL) | |
{ | |
if (!is.null(seed_)) | |
{ | |
set.seed(seed_) | |
} | |
train <- sample(nrow(df), split_ * nrow(df)) | |
df_train <- df[train,] | |
df_test <- df[-train,] | |
return(list(train = df_train, test = df_test)) | |
} | |
s <- train_test_split(airbnb_train, seed_ = 458) | |
train <- s[["train"]] | |
valid <- s[["test"]] | |
# XGBOOST | |
xgb_train <- model.matrix(high_booking_rate ~ . - 1, train) | |
xgb_valid <- model.matrix(high_booking_rate ~ . - 1, valid) | |
train_xgb_matrix <- xgb.DMatrix(xgb_train, label = train$high_booking_rate) | |
val_xgb <- list(train = xgb.DMatrix(data = xgb_train, label = train$high_booking_rate), | |
test = xgb.DMatrix(data = xgb_valid, label = valid$high_booking_rate)) | |
random_grid_xgb <- function(data, label) | |
{ | |
# param data: model matrix or xgb.DMatrix class, a table of dimensions only contains numerics | |
# param label: true Y for data | |
param <- list(booster = "gbtree", | |
objective = "binary:logistic", | |
eval_metric = "error", | |
max_depth = sample(6:10, 1), | |
num_parallel_tree = sample(c(50, 100, 150), 1), | |
eta = runif(1, .01, .3), # Learning rate, default: 0.3 | |
subsample = runif(1, .6, .9), | |
colsample_bytree = runif(1, .5, .8), | |
min_child_weight = sample(1:20, 1), | |
max_delta_step = sample(1:10, 1), | |
lambda = sample(seq(0.1, 1, 0.01), 1), | |
nthread = 16) | |
seed.number <- sample.int(10000, 1) # set seed for the cv | |
set.seed(seed.number) | |
mdcv <- xgb.cv(data = data, | |
label = label, | |
params = param, | |
nfold = 5, | |
nrounds = 3, | |
prediction = TRUE, | |
verbose = 1, | |
early_stopping_rounds = 8, | |
maximize = FALSE) | |
max_acc_index <- mdcv$best_iteration | |
max_acc <- 1 - mdcv$evaluation_log[mdcv$best_iteration]$test_error_mean | |
return(list(acc=max_acc, acc_index=max_acc_index, seed=seed.number, param=param)) | |
} | |
# randomly find best parameters | |
best_acc <- 0 | |
for (iter in 1:100) | |
{ | |
result <- random_grid_xgb(xgb_train, train$high_booking_rate) | |
if (result[["acc"]] > best_acc) | |
{ | |
best_acc <- result[["acc"]] | |
best_acc_index <- result[["acc_index"]] | |
best_seed <- result[["seed"]] | |
best_param <- result[["param"]] | |
} | |
} | |
print(best_acc) | |
# after printed best_param we can get: | |
best_param = list(booster = "gbtree", | |
objective = "binary:logistic", | |
eval_metric = "error", | |
max_depth = 10, | |
num_parallel_tree = 50, | |
eta = 0.22, | |
subsample = 0.6918, | |
colsample_bytree = 0.6722, | |
min_child_weight = 14, | |
max_delta_step = 10, | |
lambda = 0.64, | |
nthread=8 | |
) | |
# implement best params on model | |
best_seed = 7576 | |
set.seed(best_seed) | |
xgb_mod1 <- xgb.train(params = best_param, | |
data = train_xgb_matrix, | |
watchlist = val_xgb, | |
early_stopping_rounds = 8, | |
lambda_bias = 0.01, | |
maximize = F, | |
nrounds = 100) | |
# check accuracy on all train data | |
xgb_pred <- predict(xgb_mod1, xgb_train) | |
acc <- sum((xgb_pred > 0.5) == train$high_booking_rate) / length(xgb_pred) | |
print(acc) | |
# XGBOOST output | |
xgb_test <- model.matrix(~. - 1, airbnb_test) | |
# fill uncategorized columns | |
for (col_name in colnames(xgb_train)) | |
{ | |
if (!col_name %in% colnames(xgb_test)) | |
{ | |
xgb_test <- cbind(xgb_test, as.vector(replicate(nrow(xgb_test), 0))) | |
colnames(xgb_test)[ncol(xgb_test)] <- col_name | |
} | |
} | |
# align column order with model | |
xgb_test <- xgb_test[, xgb_mod1[["feature_names"]]] | |
xgb_pred <- predict(xgb_mod1, xgb_test) | |
test_preds <- ifelse(xgb_pred > 0.5, 1, 0) | |
test_preds <- data.frame(index = airbnb_test_new$X, high_booking_rate = test_preds) | |
for (i in 1:max(airbnb_test_X$X)) | |
{ | |
if (sum(test_preds$index == i) == 0) | |
{ | |
test_preds[nrow(test_preds) + 1,] <- c(i, 0) | |
} | |
} | |
test_preds <- test_preds[order(test_preds$index),] | |
write.csv(test_preds, "OUTPUT_PATH/FILENAME.csv", row.names = F) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment