Last active
January 26, 2019 02:13
-
-
Save allenanie/7f7bbaecc71c767c7cba17986310dc5d to your computer and use it in GitHub Desktop.
Run BERT to extract features of a sentence
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # adapted from | |
| # https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/extract_features.py | |
| class InputFeatures(object): | |
| """A single set of features of data.""" | |
| def __init__(self, tokens, input_ids, input_mask, input_type_ids): | |
| self.tokens = tokens | |
| self.input_ids = input_ids | |
| self.input_mask = input_mask | |
| self.input_type_ids = input_type_ids | |
| def convert_examples_to_features(sentences, seq_length, tokenizer, silent=True): | |
| """Loads a data file into a list of `InputBatch`s.""" | |
| features = [] | |
| for (ex_index, example) in enumerate(sentences): | |
| tokens_a = tokenizer.tokenize(example) | |
| # Account for [CLS] and [SEP] with "- 2" | |
| if len(tokens_a) > seq_length - 2: | |
| tokens_a = tokens_a[0:(seq_length - 2)] | |
| # The convention in BERT is: | |
| # (a) For sequence pairs: | |
| # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
| # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
| # (b) For single sequences: | |
| # tokens: [CLS] the dog is hairy . [SEP] | |
| # type_ids: 0 0 0 0 0 0 0 | |
| # | |
| # Where "type_ids" are used to indicate whether this is the first | |
| # sequence or the second sequence. The embedding vectors for `type=0` and | |
| # `type=1` were learned during pre-training and are added to the wordpiece | |
| # embedding vector (and position vector). This is not *strictly* necessary | |
| # since the [SEP] token unambigiously separates the sequences, but it makes | |
| # it easier for the model to learn the concept of sequences. | |
| # | |
| # For classification tasks, the first vector (corresponding to [CLS]) is | |
| # used as as the "sentence vector". Note that this only makes sense because | |
| # the entire model is fine-tuned. | |
| tokens = [] | |
| input_type_ids = [] | |
| tokens.append("[CLS]") | |
| input_type_ids.append(0) | |
| for token in tokens_a: | |
| tokens.append(token) | |
| input_type_ids.append(0) | |
| tokens.append("[SEP]") | |
| input_type_ids.append(0) | |
| input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
| # The mask has 1 for real tokens and 0 for padding tokens. Only real | |
| # tokens are attended to. | |
| input_mask = [1] * len(input_ids) | |
| # Zero-pad up to the sequence length. | |
| while len(input_ids) < seq_length: | |
| input_ids.append(0) | |
| input_mask.append(0) | |
| input_type_ids.append(0) | |
| assert len(input_ids) == seq_length | |
| assert len(input_mask) == seq_length | |
| assert len(input_type_ids) == seq_length | |
| if ex_index < 5 and not silent: | |
| print("*** Example ***") | |
| print("tokens: %s" % " ".join([str(x) for x in tokens])) | |
| print("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
| print("input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
| print("input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) | |
| features.append( | |
| InputFeatures( | |
| tokens=tokens, | |
| input_ids=input_ids, | |
| input_mask=input_mask, | |
| input_type_ids=input_type_ids)) | |
| return features | |
| # only need to pass in a list of sentences | |
| def bert_encode(sentences, max_seq_length=128, is_cuda=False): | |
| features = convert_examples_to_features( | |
| sentences=sentences, seq_length=max_seq_length, tokenizer=tokenizer) | |
| if is_cuda: | |
| input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).cuda(gpu_id) | |
| input_masks = torch.tensor([f.input_mask for f in features], dtype=torch.long).cuda(gpu_id) | |
| else: | |
| input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
| input_masks = torch.tensor([f.input_mask for f in features], dtype=torch.long) | |
| final_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_masks, output_all_encoded_layers=False) | |
| # the [CLS] position | |
| return final_encoder_layers[:, 0].data | |
| import torch | |
| from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForMaskedLM, BertForSequenceClassification | |
| # Load pre-trained model tokenizer (vocabulary) | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertModel.from_pretrained('bert-base-uncased') | |
| model.eval() | |
| model.to(gpu_id) | |
| bert_encode(corpora[:32], is_cuda=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment