Skip to content

Instantly share code, notes, and snippets.

@allenhurff
Last active June 15, 2020 03:51
Show Gist options
  • Save allenhurff/98736c921625c47812592ba6c655a37c to your computer and use it in GitHub Desktop.
Save allenhurff/98736c921625c47812592ba6c655a37c to your computer and use it in GitHub Desktop.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import time
import numpy
import colorsys
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from fonts.ttf import RobotoMedium as UserFont
import ST7735
from bme280 import BME280
from ltr559 import LTR559
import pytz
from pytz import timezone
from astral.geocoder import database, lookup
from astral.sun import sun
from datetime import datetime, timedelta
# START SECTION ::: LOGGER HEAD LOGGING SETUP
# START SECTION :: LOGGER HEAD LOGGING SETUP
import logging
logging.basicConfig(level=logging.INFO)
# create logger
logger = logging.getLogger('PIM458 Enviro+ RPI3')
logger.setLevel(logging.INFO)
# DEBUG breakpoint TESTS!
# IF < 3.7 [OLDER DEFER BELOW IF POSSIBLE] THIS
# import pdb; pdb.set_trace()
# ELSE IF > 3.7 THIS [LASTEST and PREFERRED]
# breakpoint()
# create console handler and set level to INFO
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
# TEST ALL Logging Genres
# 'application' code
# logger.debug('debug message')
# logger.info('info message')
# logger.warning('warn message')
# logger.error('error message')
# logger.critical('critical message')
# END SECTION :: LOGGER HEAD LOGGING SETUP
# END SECTION ::: LOGGER HEAD LOGGING SETUP
try:
from smbus2 import SMBus
except ImportError:
from smbus import SMBus
def calculate_y_pos(x, centre):
"""Calculates the y-coordinate on a parabolic curve, given x."""
centre = 80
y = 1 / centre * (x - centre) ** 2
return int(y)
def circle_coordinates(x, y, radius):
"""Calculates the bounds of a circle, given centre and radius."""
x1 = x - radius # Left
x2 = x + radius # Right
y1 = y - radius # Bottom
y2 = y + radius # Top
return (x1, y1, x2, y2)
def map_colour(x, centre, start_hue, end_hue, day):
"""Given an x coordinate and a centre point, a start and end hue (in degrees),
and a Boolean for day or night (day is True, night False), calculate a colour
hue representing the 'colour' of that time of day."""
start_hue = start_hue / 360 # Rescale to between 0 and 1
end_hue = end_hue / 360
sat = 1.0
# Dim the brightness as you move from the centre to the edges
val = 1 - (abs(centre - x) / (2 * centre))
# Ramp up towards centre, then back down
if x > centre:
x = (2 * centre) - x
# Calculate the hue
hue = start_hue + ((x / centre) * (end_hue - start_hue))
# At night, move towards purple/blue hues and reverse dimming
if not day:
hue = 1 - hue
val = 1 - val
r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)]
return (r, g, b)
def x_from_sun_moon_time(progress, period, x_range):
"""Recalculate/rescale an amount of progress through a time period."""
x = int((progress / period) * x_range)
return x
def sun_moon_time(city_name, time_zone):
"""Calculate the progress through the current sun/moon period (i.e day or
night) from the last sunrise or sunset, given a datetime object 't'."""
city = lookup(city_name, database())
# Datetime objects for yesterday, today, tomorrow
utc = pytz.utc
utc_dt = datetime.now(tz=utc)
local_dt = utc_dt.astimezone(pytz.timezone(time_zone))
today = local_dt.date()
yesterday = today - timedelta(1)
tomorrow = today + timedelta(1)
# DEBUG breakpoint TEST!
# breakpoint()
logger.info(' The current date/time is %s in your local TimeZone/City of %s', local_dt, time_zone)
# logger.debug(local_dt)
# Sun objects for yesterday, today, tomorrow
sun_yesterday = sun(city.observer, date=yesterday)
sun_today = sun(city.observer, date=today)
sun_tomorrow = sun(city.observer, date=tomorrow)
# Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow
sunset_yesterday = sun_yesterday["sunset"]
sunrise_today = sun_today["sunrise"]
sunset_today = sun_today["sunset"]
sunrise_tomorrow = sun_tomorrow["sunrise"]
# Work out lengths of day or night period and progress through period
if sunrise_today < local_dt < sunset_today:
day = True
period = sunset_today - sunrise_today
# mid = sunrise_today + (period / 2)
progress = local_dt - sunrise_today
elif local_dt > sunset_today:
day = False
period = sunrise_tomorrow - sunset_today
# mid = sunset_today + (period / 2)
progress = local_dt - sunset_today
else:
day = False
period = sunrise_today - sunset_yesterday
# mid = sunset_yesterday + (period / 2)
progress = local_dt - sunset_yesterday
# Convert time deltas to seconds
progress = progress.total_seconds()
period = period.total_seconds()
return (progress, period, day, local_dt)
def draw_background(progress, period, day):
"""Given an amount of progress through the day or night, draw the
background colour and overlay a blurred sun/moon."""
# x-coordinate for sun/moon
x = x_from_sun_moon_time(progress, period, WIDTH)
# If it's day, then move right to left
if day:
x = WIDTH - x
# Calculate position on sun/moon's curve
centre = WIDTH / 2
y = calculate_y_pos(x, centre)
# Background colour
background = map_colour(x, 80, mid_hue, day_hue, day)
# New image for background colour
img = Image.new('RGBA', (WIDTH, HEIGHT), color=background)
# draw = ImageDraw.Draw(img)
# New image for sun/moon overlay
overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
# Draw the sun/moon
circle = circle_coordinates(x, y, sun_radius)
overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity))
# Overlay the sun/moon on the background as an alpha matte
composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur))
return composite
def overlay_text(img, position, text, font, align_right=False, rectangle=False):
draw = ImageDraw.Draw(img)
w, h = font.getsize(text)
if align_right:
x, y = position
x -= w
position = (x, y)
if rectangle:
x += 1
y += 1
position = (x, y)
border = 1
rect = (x - border, y, x + w, y + h + border)
rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
rect_draw = ImageDraw.Draw(rect_img)
rect_draw.rectangle(rect, (255, 255, 255))
rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0))
img = Image.alpha_composite(img, rect_img)
else:
draw.text(position, text, font=font, fill=(255, 255, 255))
return img
def get_cpu_temperature():
with open("/sys/class/thermal/thermal_zone0/temp", "r") as f:
temp = f.read()
temp = int(temp) / 1000.0
return temp
def correct_humidity(humidity, temperature, corr_temperature):
dewpoint = temperature - ((100 - humidity) / 5)
corr_humidity = 100 - (5 * (corr_temperature - dewpoint))
return min(100, corr_humidity)
def analyse_pressure(pressure, t):
global time_vals, pressure_vals, trend
if len(pressure_vals) > num_vals:
pressure_vals = pressure_vals[1:] + [pressure]
time_vals = time_vals[1:] + [t]
# Calculate line of best fit
line = numpy.polyfit(time_vals, pressure_vals, 1, full=True)
# Calculate slope, variance, and confidence
slope = line[0][0]
intercept = line[0][1]
variance = numpy.var(pressure_vals)
residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)])
r_squared = 1 - residuals / variance
# Calculate change in pressure per hour
change_per_hour = slope * 60 * 60
# variance_per_hour = variance * 60 * 60
mean_pressure = numpy.mean(pressure_vals)
# Calculate trend
if r_squared > 0.5:
if change_per_hour > 0.5:
trend = ">"
elif change_per_hour < -0.5:
trend = "<"
elif -0.5 <= change_per_hour <= 0.5:
trend = "-"
if trend != "-":
if abs(change_per_hour) > 3:
trend *= 2
else:
pressure_vals.append(pressure)
time_vals.append(t)
mean_pressure = numpy.mean(pressure_vals)
change_per_hour = 0
trend = "-"
# time.sleep(interval)
return (mean_pressure, change_per_hour, trend)
def describe_pressure(pressure):
"""Convert pressure into barometer-type description."""
if pressure < 970:
description = "storm"
elif 970 <= pressure < 990:
description = "rain"
elif 990 <= pressure < 1010:
description = "change"
elif 1010 <= pressure < 1030:
description = "fair"
elif pressure >= 1030:
description = "dry"
else:
description = ""
return description
def describe_humidity(humidity):
"""Convert relative humidity into good/bad description."""
if 40 < humidity < 60:
description = "good"
else:
description = "bad"
return description
def describe_light(light):
"""Convert light level in lux to descriptive value."""
if light < 50:
description = "dark"
elif 50 <= light < 100:
description = "dim"
elif 100 <= light < 500:
description = "light"
elif light >= 500:
description = "bright"
return description
# Initialise the LCD
disp = ST7735.ST7735(
port=0,
cs=1,
dc=9,
backlight=12,
rotation=270,
spi_speed_hz=10000000
)
disp.begin()
WIDTH = disp.width
HEIGHT = disp.height
# The city and timezone that you want to display.
city_name = "Los Angeles"
time_zone = "America/Los_Angeles"
# Values that alter the look of the background
blur = 50
opacity = 125
mid_hue = 0
day_hue = 25
sun_radius = 50
# Fonts
font_sm = ImageFont.truetype(UserFont, 12)
font_lg = ImageFont.truetype(UserFont, 14)
# Margins
margin = 3
# Set up BME280 weather sensor
bus = SMBus(1)
bme280 = BME280(i2c_dev=bus)
min_temp = None
max_temp = None
factor = 2.25
cpu_temps = [get_cpu_temperature()] * 5
# Set up light sensor
ltr559 = LTR559()
# Pressure variables
pressure_vals = []
time_vals = []
num_vals = 1000
interval = 1
trend = "-"
# Keep track of time elapsed
start_time = time.time()
while True:
path = os.path.dirname(os.path.realpath(__file__))
progress, period, day, local_dt = sun_moon_time(city_name, time_zone)
background = draw_background(progress, period, day)
# Time.
time_elapsed = time.time() - start_time
date_string = local_dt.strftime("%b %d %Y").lstrip('0')
time_string = local_dt.strftime("%-I:%M %p")
img = overlay_text(background, (0 + margin, 0 + margin), date_string, font_lg)
img = overlay_text(img, (WIDTH - margin, 0 + margin), time_string, font_lg, align_right=True)
# Temperature
temperature = bme280.get_temperature()
# Corrected temperature
cpu_temp = get_cpu_temperature()
cpu_temps = cpu_temps[1:] + [cpu_temp]
avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor)
if time_elapsed > 30:
if min_temp is not None and max_temp is not None:
if corr_temperature < min_temp:
min_temp = corr_temperature
elif corr_temperature > max_temp:
max_temp = corr_temperature
else:
min_temp = corr_temperature
max_temp = corr_temperature
# temp_string = f"{corr_temperature:.0f}°C"
corr_temp_fahrenheit_int = int(round((9 * corr_temperature) / 5 + 32))
temp_string = f"{corr_temp_fahrenheit_int:.0f}°F"
img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True)
spacing = font_lg.getsize(temp_string)[1] + 1
if min_temp is not None and max_temp is not None:
range_string = f"{min_temp:.0f}-{max_temp:.0f}"
else:
range_string = "------"
img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True)
temp_icon = Image.open(f"{path}/icons/temperature.png")
img.paste(temp_icon, (margin, 18), mask=temp_icon)
# Humidity
humidity = bme280.get_humidity()
corr_humidity = correct_humidity(humidity, temperature, corr_temperature)
humidity_string = f"{corr_humidity:.0f}%"
img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True)
spacing = font_lg.getsize(humidity_string)[1] + 1
humidity_desc = describe_humidity(corr_humidity).upper()
img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True)
humidity_icon = Image.open(f"{path}/icons/humidity-{humidity_desc.lower()}.png")
img.paste(humidity_icon, (margin, 48), mask=humidity_icon)
# Light
light = ltr559.get_lux()
light_string = f"{int(light):,}"
img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True)
spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1
light_desc = describe_light(light).upper()
img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True)
light_icon = Image.open(f"{path}/icons/bulb-{light_desc.lower()}.png")
img.paste(humidity_icon, (80, 18), mask=light_icon)
# Pressure
pressure = bme280.get_pressure()
t = time.time()
mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t)
pressure_string = f"{int(mean_pressure):,} {trend}"
img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True)
pressure_desc = describe_pressure(mean_pressure).upper()
spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1
img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True)
pressure_icon = Image.open(f"{path}/icons/weather-{pressure_desc.lower()}.png")
img.paste(pressure_icon, (80, 48), mask=pressure_icon)
# Display image
disp.display(img)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import time
import numpy
import colorsys
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from fonts.ttf import RobotoMedium as UserFont
import ST7735
from bme280 import BME280
from ltr559 import LTR559
import pytz
from pytz import timezone
from astral.geocoder import database, lookup
from astral.sun import sun
from datetime import datetime, timedelta
# START SECTION ::: LOGGER HEAD LOGGING SETUP
# START SECTION :: LOGGER HEAD LOGGING SETUP
import logging
logging.basicConfig(level=logging.INFO)
# create logger
logger = logging.getLogger('PIM458 Enviro+ RPI3')
logger.setLevel(logging.INFO)
# DEBUG breakpoint TESTS!
# IF < 3.7 [OLDER DEFER BELOW IF POSSIBLE] THIS
# import pdb; pdb.set_trace()
# ELSE IF > 3.7 THIS [LASTEST and PREFERRED]
# breakpoint()
# create console handler and set level to INFO
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
# TEST ALL Logging Genres
# 'application' code
# logger.debug('debug message')
# logger.info('info message')
# logger.warning('warn message')
# logger.error('error message')
# logger.critical('critical message')
# END SECTION :: LOGGER HEAD LOGGING SETUP
# END SECTION ::: LOGGER HEAD LOGGING SETUP
try:
from smbus2 import SMBus
except ImportError:
from smbus import SMBus
def calculate_y_pos(x, centre):
"""Calculates the y-coordinate on a parabolic curve, given x."""
centre = 80
y = 1 / centre * (x - centre) ** 2
return int(y)
def circle_coordinates(x, y, radius):
"""Calculates the bounds of a circle, given centre and radius."""
x1 = x - radius # Left
x2 = x + radius # Right
y1 = y - radius # Bottom
y2 = y + radius # Top
return (x1, y1, x2, y2)
def map_colour(x, centre, start_hue, end_hue, day):
"""Given an x coordinate and a centre point, a start and end hue (in degrees),
and a Boolean for day or night (day is True, night False), calculate a colour
hue representing the 'colour' of that time of day."""
start_hue = start_hue / 360 # Rescale to between 0 and 1
end_hue = end_hue / 360
sat = 1.0
# Dim the brightness as you move from the centre to the edges
val = 1 - (abs(centre - x) / (2 * centre))
# Ramp up towards centre, then back down
if x > centre:
x = (2 * centre) - x
# Calculate the hue
hue = start_hue + ((x / centre) * (end_hue - start_hue))
# At night, move towards purple/blue hues and reverse dimming
if not day:
hue = 1 - hue
val = 1 - val
r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)]
return (r, g, b)
def x_from_sun_moon_time(progress, period, x_range):
"""Recalculate/rescale an amount of progress through a time period."""
x = int((progress / period) * x_range)
return x
def sun_moon_time(city_name, time_zone):
"""Calculate the progress through the current sun/moon period (i.e day or
night) from the last sunrise or sunset, given a datetime object 't'."""
city = lookup(city_name, database())
# Datetime objects for yesterday, today, tomorrow
utc = pytz.utc
utc_dt = datetime.now(tz=utc)
local_dt = utc_dt.astimezone(pytz.timezone(time_zone))
today = local_dt.date()
yesterday = today - timedelta(1)
tomorrow = today + timedelta(1)
# DEBUG breakpoint TEST!
# breakpoint()
logger.info(' The current date/time is %s in your local TimeZone/City of %s', local_dt, time_zone)
# logger.debug(local_dt)
# Sun objects for yesterday, today, tomorrow
sun_yesterday = sun(city.observer, date=yesterday)
sun_today = sun(city.observer, date=today)
sun_tomorrow = sun(city.observer, date=tomorrow)
# Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow
sunset_yesterday = sun_yesterday["sunset"]
sunrise_today = sun_today["sunrise"]
sunset_today = sun_today["sunset"]
sunrise_tomorrow = sun_tomorrow["sunrise"]
# Work out lengths of day or night period and progress through period
if sunrise_today < local_dt < sunset_today:
day = True
period = sunset_today - sunrise_today
# mid = sunrise_today + (period / 2)
progress = local_dt - sunrise_today
elif local_dt > sunset_today:
day = False
period = sunrise_tomorrow - sunset_today
# mid = sunset_today + (period / 2)
progress = local_dt - sunset_today
else:
day = False
period = sunrise_today - sunset_yesterday
# mid = sunset_yesterday + (period / 2)
progress = local_dt - sunset_yesterday
# Convert time deltas to seconds
progress = progress.total_seconds()
period = period.total_seconds()
return (progress, period, day, local_dt)
def draw_background(progress, period, day):
"""Given an amount of progress through the day or night, draw the
background colour and overlay a blurred sun/moon."""
# x-coordinate for sun/moon
x = x_from_sun_moon_time(progress, period, WIDTH)
# If it's day, then move right to left
if day:
x = WIDTH - x
# Calculate position on sun/moon's curve
centre = WIDTH / 2
y = calculate_y_pos(x, centre)
# Background colour
background = map_colour(x, 80, mid_hue, day_hue, day)
# New image for background colour
img = Image.new('RGBA', (WIDTH, HEIGHT), color=background)
# draw = ImageDraw.Draw(img)
# New image for sun/moon overlay
overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
# Draw the sun/moon
circle = circle_coordinates(x, y, sun_radius)
overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity))
# Overlay the sun/moon on the background as an alpha matte
composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur))
return composite
def overlay_text(img, position, text, font, align_right=False, rectangle=False):
draw = ImageDraw.Draw(img)
w, h = font.getsize(text)
if align_right:
x, y = position
x -= w
position = (x, y)
if rectangle:
x += 1
y += 1
position = (x, y)
border = 1
rect = (x - border, y, x + w, y + h + border)
rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
rect_draw = ImageDraw.Draw(rect_img)
rect_draw.rectangle(rect, (255, 255, 255))
rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0))
img = Image.alpha_composite(img, rect_img)
else:
draw.text(position, text, font=font, fill=(255, 255, 255))
return img
def get_cpu_temperature():
with open("/sys/class/thermal/thermal_zone0/temp", "r") as f:
temp = f.read()
temp = int(temp) / 1000.0
return temp
def correct_humidity(humidity, temperature, corr_temperature):
dewpoint = temperature - ((100 - humidity) / 5)
corr_humidity = 100 - (5 * (corr_temperature - dewpoint))
return min(100, corr_humidity)
def analyse_pressure(pressure, t):
global time_vals, pressure_vals, trend
if len(pressure_vals) > num_vals:
pressure_vals = pressure_vals[1:] + [pressure]
time_vals = time_vals[1:] + [t]
# Calculate line of best fit
line = numpy.polyfit(time_vals, pressure_vals, 1, full=True)
# Calculate slope, variance, and confidence
slope = line[0][0]
intercept = line[0][1]
variance = numpy.var(pressure_vals)
residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)])
r_squared = 1 - residuals / variance
# Calculate change in pressure per hour
change_per_hour = slope * 60 * 60
# variance_per_hour = variance * 60 * 60
mean_pressure = numpy.mean(pressure_vals)
# Calculate trend
if r_squared > 0.5:
if change_per_hour > 0.5:
trend = ">"
elif change_per_hour < -0.5:
trend = "<"
elif -0.5 <= change_per_hour <= 0.5:
trend = "-"
if trend != "-":
if abs(change_per_hour) > 3:
trend *= 2
else:
pressure_vals.append(pressure)
time_vals.append(t)
mean_pressure = numpy.mean(pressure_vals)
change_per_hour = 0
trend = "-"
# time.sleep(interval)
return (mean_pressure, change_per_hour, trend)
def describe_pressure(pressure):
"""Convert pressure into barometer-type description."""
if pressure < 970:
description = "storm"
elif 970 <= pressure < 990:
description = "rain"
elif 990 <= pressure < 1010:
description = "change"
elif 1010 <= pressure < 1030:
description = "fair"
elif pressure >= 1030:
description = "dry"
else:
description = ""
return description
def describe_humidity(humidity):
"""Convert relative humidity into good/bad description."""
if 40 < humidity < 60:
description = "good"
else:
description = "bad"
return description
def describe_light(light):
"""Convert light level in lux to descriptive value."""
if light < 50:
description = "dark"
elif 50 <= light < 100:
description = "dim"
elif 100 <= light < 500:
description = "light"
elif light >= 500:
description = "bright"
return description
# Initialise the LCD
disp = ST7735.ST7735(
port=0,
cs=1,
dc=9,
backlight=12,
rotation=270,
spi_speed_hz=10000000
)
disp.begin()
WIDTH = disp.width
HEIGHT = disp.height
# The city and timezone that you want to display.
city_name = "Los Angeles"
time_zone = "America/Los_Angeles"
# Values that alter the look of the background
blur = 50
opacity = 125
mid_hue = 0
day_hue = 25
sun_radius = 50
# Fonts
font_sm = ImageFont.truetype(UserFont, 12)
font_lg = ImageFont.truetype(UserFont, 14)
# Margins
margin = 3
# Set up BME280 weather sensor
bus = SMBus(1)
bme280 = BME280(i2c_dev=bus)
min_temp = None
max_temp = None
factor = 2.25
cpu_temps = [get_cpu_temperature()] * 5
# Set up light sensor
ltr559 = LTR559()
# Pressure variables
pressure_vals = []
time_vals = []
num_vals = 1000
interval = 1
trend = "-"
# Keep track of time elapsed
start_time = time.time()
while True:
path = os.path.dirname(os.path.realpath(__file__))
progress, period, day, local_dt = sun_moon_time(city_name, time_zone)
background = draw_background(progress, period, day)
# Time.
time_elapsed = time.time() - start_time
date_string = local_dt.strftime("%b %d %Y").lstrip('0')
time_string = local_dt.strftime("%-I:%M %p")
img = overlay_text(background, (0 + margin, 0 + margin), date_string, font_lg)
img = overlay_text(img, (WIDTH - margin, 0 + margin), time_string, font_lg, align_right=True)
# Temperature
temperature = bme280.get_temperature()
# Corrected temperature
cpu_temp = get_cpu_temperature()
cpu_temps = cpu_temps[1:] + [cpu_temp]
avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor)
if time_elapsed > 30:
if min_temp is not None and max_temp is not None:
if corr_temperature < min_temp:
min_temp = corr_temperature
elif corr_temperature > max_temp:
max_temp = corr_temperature
else:
min_temp = corr_temperature
max_temp = corr_temperature
# temp_string = f"{corr_temperature:.0f}°C"
corr_temp_fahrenheit_int = int(round((9 * corr_temperature) / 5 + 32))
temp_string = f"{corr_temp_fahrenheit_int:.0f}°F"
img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True)
spacing = font_lg.getsize(temp_string)[1] + 1
if min_temp is not None and max_temp is not None:
range_string = f"{min_temp:.0f}-{max_temp:.0f}"
else:
range_string = "------"
img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True)
temp_icon = Image.open(f"{path}/icons/temperature.png")
img.paste(temp_icon, (margin, 18), mask=temp_icon)
# Humidity
humidity = bme280.get_humidity()
corr_humidity = correct_humidity(humidity, temperature, corr_temperature)
humidity_string = f"{corr_humidity:.0f}%"
img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True)
spacing = font_lg.getsize(humidity_string)[1] + 1
humidity_desc = describe_humidity(corr_humidity).upper()
img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True)
humidity_icon = Image.open(f"{path}/icons/humidity-{humidity_desc.lower()}.png")
img.paste(humidity_icon, (margin, 48), mask=humidity_icon)
# Light
light = ltr559.get_lux()
light_string = f"{int(light):,}"
img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True)
spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1
light_desc = describe_light(light).upper()
img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True)
light_icon = Image.open(f"{path}/icons/bulb-{light_desc.lower()}.png")
img.paste(humidity_icon, (80, 18), mask=light_icon)
# Pressure
pressure = bme280.get_pressure()
t = time.time()
mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t)
pressure_string = f"{int(mean_pressure):,} {trend}"
img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True)
pressure_desc = describe_pressure(mean_pressure).upper()
spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1
img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True)
pressure_icon = Image.open(f"{path}/icons/weather-{pressure_desc.lower()}.png")
img.paste(pressure_icon, (80, 48), mask=pressure_icon)
# Display image
disp.display(img)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment