Created
October 6, 2017 06:08
-
-
Save allenyllee/496bf8ebb3dbfdd75cbfb2eef4adfc4f to your computer and use it in GitHub Desktop.
sample of tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Simple convolutional neural network classififer.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
FLAGS = tf.flags.FLAGS | |
def get_params(): | |
"""Model params.""" | |
return { | |
"drop_rate": 0.5 | |
} | |
def model(features, labels, mode, params): | |
"""CNN classifier model.""" | |
images = features["image"] | |
labels = labels["label"] | |
tf.summary.image("images", images) | |
drop_rate = params.drop_rate if mode == tf.estimator.ModeKeys.TRAIN else 0.0 | |
features = images | |
for i, filters in enumerate([32, 64, 128]): | |
features = tf.layers.conv2d( | |
features, filters=filters, kernel_size=3, padding="same", | |
name="conv_%d" % (i + 1)) | |
features = tf.layers.max_pooling2d( | |
inputs=features, pool_size=2, strides=2, padding="same", | |
name="pool_%d" % (i + 1)) | |
features = tf.contrib.layers.flatten(features) | |
features = tf.layers.dropout(features, drop_rate) | |
features = tf.layers.dense(features, 512, name="dense_1") | |
features = tf.layers.dropout(features, drop_rate) | |
logits = tf.layers.dense(features, params.num_classes, activation=None, | |
name="dense_2") | |
predictions = tf.argmax(logits, axis=1) | |
loss = tf.losses.sparse_softmax_cross_entropy( | |
labels=labels, logits=logits) | |
return {"predictions": predictions}, loss | |
def eval_metrics(unused_params): | |
"""Eval metrics.""" | |
return { | |
"accuracy": tf.contrib.learn.MetricSpec(tf.metrics.accuracy) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment