Skip to content

Instantly share code, notes, and snippets.

@alonsopg
Created February 16, 2018 21:03
Show Gist options
  • Save alonsopg/f0a1eedea082f53519e426665a2cd270 to your computer and use it in GitHub Desktop.
Save alonsopg/f0a1eedea082f53519e426665a2cd270 to your computer and use it in GitHub Desktop.
normalization
def plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
#print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="black" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment