Last active
April 13, 2020 12:17
-
-
Save alonstern/473d8496be33ccf0cf28f3cab48946ca to your computer and use it in GitHub Desktop.
output layer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class CNNModel(nn.Module): | |
| def __init__(self, embedding_dim, kernel_size, hidden_dim, vocab_size, tagset_size): | |
| super().__init__() | |
| self._kernel_size = kernel_size | |
| self._hidden_dim = hidden_dim | |
| self._word_embeddings = nn.Embedding(vocab_size, embedding_dim) | |
| self._conv = nn.Conv2d(1, hidden_dim, kernel_size=(kernel_size, embedding_dim)) | |
| self._hidden2tag = nn.Linear(hidden_dim, tagset_size) | |
| def forward(self, sample): | |
| embeds = self._word_embeddings(sample) | |
| # Converts the vector to a shape Conv2d can work with | |
| conv_in = embeds.view(1, 1, len(sample), -1) | |
| conv_out = self._conv(conv_in) | |
| conv_out = F.relu(conv_out) | |
| hidden_in = conv_out.view(self._hidden_dim, len(sample) + 1 - self._kernel_size).transpose(0, 1) | |
| tag_space = self._hidden2tag(hidden_in) | |
| tag_scores = F.log_softmax(tag_space, dim=1) | |
| return tag_scores |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment