Skip to content

Instantly share code, notes, and snippets.

@alreadydone
Created October 6, 2023 09:01
Show Gist options
  • Save alreadydone/40333872e072abc8125dd95d20f07f2c to your computer and use it in GitHub Desktop.
Save alreadydone/40333872e072abc8125dd95d20f07f2c to your computer and use it in GitHub Desktop.
A free and properly discontinuous action induces a covering map.
import Mathlib.Topology.Covering
import Mathlib.Topology.Instances.AddCircle
open Topology
variable {E X A : Type*} [TopologicalSpace E] [TopologicalSpace X] [TopologicalSpace A]
/- Note: WeaklyLocallyCompact + T2 actually implies LocallyCompact. -/
@[to_additive] lemma coveringMulAction_of_properlyDiscontinuousSMul {Γ T}
[TopologicalSpace T] [SMul Γ T] (cont : ∀ g : Γ, Continuous (fun t : T ↦ g • t))
[ProperlyDiscontinuousSMul Γ T] [WeaklyLocallyCompactSpace T] [T2Space T] (t : T) :
∃ U ∈ 𝓝 t, ∀ g : Γ, (g • ·) '' U ∩ U ≠ ∅ → g • t = t := by
obtain ⟨V, V_cpt, V_nhd⟩ := exists_compact_mem_nhds t
let Γ₀ := {g : Γ | (g • ·) '' V ∩ V ≠ ∅ ∧ g • t ≠ t}
have : Γ₀.Finite := (finite_disjoint_inter_image (Γ := Γ) V_cpt V_cpt).subset (fun _ ↦ And.left)
let W' := V \ (· • t) '' Γ₀
have htW' : W' ∈ 𝓝 t := Filter.diff_mem V_nhd
((this.image _).isClosed.isOpen_compl.mem_nhds fun ⟨g, hg, hgt⟩ ↦ hg.2 hgt)
obtain ⟨W, htW, hWW', cpt_W⟩ := local_compact_nhds htW'
refine ⟨W \ ⋃ g ∈ Γ₀, (g • ·) ⁻¹' W, Filter.diff_mem htW <| ((this.isClosed_biUnion fun g _ ↦
(cpt_W.isClosed).preimage <| cont g).isOpen_compl).mem_nhds fun h ↦ ?_, fun g hg ↦ ?_⟩
· obtain ⟨g, hg, hgW⟩ := Set.mem_iUnion₂.mp h
exact (hWW' hgW).2 ⟨g, hg, rfl⟩
· by_contra hgt
obtain ⟨t₀, ht₀⟩ := Set.nonempty_iff_ne_empty.mpr hg
obtain ⟨t₁, ⟨-, ht₁⟩, rfl⟩ := ht₀.1
refine ht₁ (Set.mem_iUnion₂.mpr ⟨g, ⟨Set.nonempty_iff_ne_empty.mp ?_, hgt⟩, ht₀.2.1⟩)
obtain ⟨⟨t₂, ⟨ht₂, -⟩, ht₁₂⟩, ht₀, -⟩ := ht₀
exact ⟨g • t₁, ⟨t₂, (hWW' ht₂).1, ht₁₂⟩, (hWW' ht₀).1⟩
/- already in mathlib -/
lemma continuousOn_prod_of_discrete_right [DiscreteTopology A] {f : X × A → E} {s : Set (X × A)} :
ContinuousOn f s ↔ ∀ a, ContinuousOn (f ⟨·, a⟩) {x | (x, a) ∈ s} := by
simp_rw [ContinuousOn, Prod.forall, ContinuousWithinAt, nhdsWithin, nhds_prod_eq, nhds_discrete,
Filter.prod_pure, ← Filter.map_inf_principal_preimage]; apply forall_swap
@[to_additive]
lemma QuotientMap.trivialization_of_mulAction {G} [TopologicalSpace G] [DiscreteTopology G]
[Group G] [MulAction G E] (cont : ∀ g : G, Continuous (fun e : E ↦ g • e))
{p : E → X} (hp : QuotientMap p) (hpG : ∀ {e₁ e₂}, p e₁ = p e₂ ↔ e₁ ∈ MulAction.orbit G e₂)
(U : Set E) (hoU : IsOpen U) (hU : ∀ g : G, (g • ·) '' U ∩ U ≠ ∅ → g = 1) :
∃ t : Trivialization G p, t.baseSet = p '' U := by
simp_rw [← Set.nonempty_iff_ne_empty] at hU
have inj_U : U.InjOn p
· intro e₁ h₁ e₂ h₂ he; obtain ⟨g, rfl⟩ := hpG.mp he
rw [hU g ⟨_, ⟨e₂, h₂, rfl⟩, h₁⟩]; apply one_smul
let source := ⋃ g : G, (g • ·) ⁻¹' U
have h_source : ∀ e ∈ source, ∃! g : G, g • e ∈ U
· intro e ⟨_, ⟨g, rfl⟩, hg⟩
refine ⟨g, hg, fun g' hg' ↦ mul_inv_eq_one.mp (hU _ ⟨g' • e, ⟨g • e, hg, ?_⟩, hg'⟩)⟩
dsimp only; rw [mul_smul, inv_smul_smul]
have preim_im : ∀ V, p ⁻¹' (p '' V) = ⋃ g : G, (g • ·) ⁻¹' V
· refine fun V ↦ subset_antisymm (fun e ⟨e', heU, he⟩ ↦ ?_) ?_
· intro e ⟨_, ⟨g, rfl⟩, hg⟩; exact ⟨_, hg, hpG.mpr ⟨g, rfl⟩⟩
· obtain ⟨g, rfl⟩ := hpG.mp he; exact ⟨_, ⟨g, rfl⟩, heU⟩
have hpU : p '' U = p '' source
· simp_rw [← preim_im, Set.image_preimage_eq_of_subset (Set.image_subset_range _ _)]
choose g hgU uniq using h_source
choose f hfU hpf using (fun x ↦ id : ∀ x ∈ p '' U, ∃ e ∈ U, p e = x)
have hfU' : ∀ {g : G} {x} {hx : x ∈ p '' U}, g • g⁻¹ • f x hx ∈ U :=
fun {g x hx} ↦ by rw [smul_inv_smul]; apply hfU
have open_source : IsOpen source := isOpen_iUnion fun g ↦ hoU.preimage (cont g)
have open_pU : IsOpen (p '' U) := by rw [← hp.isOpen_preimage, preim_im]; exact open_source
classical
let inv : X → E := fun x ↦ if hx : x ∈ p '' U then f x hx else (hp.surjective x).choose
have inv_p : U.LeftInvOn inv p
· intro e he; dsimp only; rw [dif_pos ⟨e, he, rfl⟩]
exact inj_U (hfU _ ⟨e, he, rfl⟩) he (hpf _ _)
have cont_inv : ContinuousOn inv (p '' U)
· refine (continuousOn_open_iff open_pU).mpr fun V hoV ↦ hp.isOpen_preimage.mp ?_
rw [Set.inter_comm, ← inv_p.image_inter', preim_im]
exact isOpen_iUnion fun g ↦ (hoV.inter hoU).preimage (cont g)
let F : LocalEquiv E (X × G); refine
{ toFun := fun e ↦ (p e, if he : e ∈ source then g e he else 1),
invFun := fun x ↦ x.2⁻¹ • inv x.1,
source := source,
target := (p '' U) ×ˢ Set.univ,
map_source' := fun e he ↦ ⟨hpU ▸ ⟨e, he, rfl⟩, trivial⟩,
map_target' := fun x ⟨hx, _⟩ ↦ ?_,
left_inv' := fun e he ↦ ?_,
right_inv' := fun x hx ↦ ?_ }
· dsimp only; rw [dif_pos hx]; exact ⟨_, ⟨x.2, rfl⟩, hfU'⟩
· dsimp only; simp_rw [dif_pos he, hpU, dif_pos (Set.mem_image_of_mem p he), inv_smul_eq_iff]
exact inj_U (hfU _ _) (hgU _ _) (by rw [hpf, hpG.mpr ⟨_, rfl⟩])
· dsimp only; rw [dif_pos hx.1, dif_pos ⟨_, ⟨x.2, rfl⟩, hfU'⟩]
exact Prod.ext (by rw [hpG.mpr ⟨_, rfl⟩, hpf]) (uniq _ _ _ hfU').symm
let F : LocalHomeomorph E (X × G); refine
{ toLocalEquiv := F,
open_source := open_source,
open_target := open_pU.prod isOpen_univ,
continuous_toFun := hp.continuous.continuousOn.prod (ContinuousAt.continuousOn
fun e he ↦ continuous_const (b := g e he) |>.continuousAt.congr <| mem_nhds_iff.mpr
⟨(g e he • ·) ⁻¹' U, fun e' he' ↦ (uniq _ _ _ ?_).symm, hoU.preimage (cont _), hgU _ _⟩),
continuous_invFun := ?_ }
· have : e' ∈ F.source := ⟨_, ⟨_, rfl⟩, he'⟩
dsimp only; rw [dif_pos this, ← uniq _ this _ he']; apply hgU
· exact continuousOn_prod_of_discrete_right.mpr fun g ↦
((cont g⁻¹).comp_continuousOn cont_inv).congr_mono (fun x _ ↦ rfl) fun x ↦ And.left
use { toLocalHomeomorph := F,
baseSet := p '' U,
open_baseSet := open_pU,
source_eq := (preim_im U).symm,
target_eq := rfl,
proj_toFun := fun _ _ ↦ rfl }
@[to_additive] lemma QuotientMap.isCoveringMapOn_of_mulAction {G} [Group G] [MulAction G E]
(cont : ∀ g : G, Continuous (fun e : E ↦ g • e))
[ProperlyDiscontinuousSMul G E] [WeaklyLocallyCompactSpace E] [T2Space E]
{p : E → X} (hp : QuotientMap p) (hpG : ∀ {e₁ e₂}, p e₁ = p e₂ ↔ e₁ ∈ MulAction.orbit G e₂) :
IsCoveringMapOn p (p '' {e | MulAction.stabilizer G e = ⊥}) := by
letI : TopologicalSpace G := ⊥; have : DiscreteTopology G := ⟨rfl⟩
/- Is there a type synonym to put the discrete topology on a type? -/
have : ∀ x ∈ p '' {e | MulAction.stabilizer G e = ⊥}, ∃ t : Trivialization G p, x ∈ t.baseSet
· rintro x ⟨e, he, rfl⟩
obtain ⟨U, heU, hU⟩ := coveringMulAction_of_properlyDiscontinuousSMul cont e
have := hp.trivialization_of_mulAction cont hpG (interior U) isOpen_interior (fun g hg ↦ ?_)
· obtain ⟨t, hpU⟩ := this; use t; rw [hpU]
exact ⟨e, mem_interior_iff_mem_nhds.mpr heU, rfl⟩
rw [← Subgroup.mem_bot, ← he]; apply hU; contrapose! hg; exact Set.subset_eq_empty
(Set.inter_subset_inter (Set.image_subset _ interior_subset) interior_subset) hg
choose t ht using this
exact IsCoveringMapOn.mk _ _ (fun _ ↦ G) t ht
@[to_additive] lemma isCoveringMapOn_quotient_of_mulAction {G} [Group G] [MulAction G E]
(cont : ∀ g : G, Continuous (fun e : E ↦ g • e))
[ProperlyDiscontinuousSMul G E] [WeaklyLocallyCompactSpace E] [T2Space E] :
IsCoveringMapOn (Quotient.mk _)
((Quotient.mk <| MulAction.orbitRel G E) '' {e | MulAction.stabilizer G e = ⊥}) :=
QuotientMap.isCoveringMapOn_of_mulAction cont quotientMap_quotient_mk' Quotient.eq''
/- TODO: WeaklyLocallyCompactSpace can be removed; need to bypass ProperlyDiscontinuous for that,
because ProperlyDiscontinuous → CoveringMap requires LocallyCompact.
See also: https://math.stackexchange.com/a/1083696/12932 -/
@[to_additive] lemma Subgroup.isCoveringMap {G} [Group G] [TopologicalSpace G] [TopologicalGroup G]
[T2Space G] [WeaklyLocallyCompactSpace G] (H : Subgroup G) [DiscreteTopology H] :
IsCoveringMap (QuotientGroup.mk (s := H)) := by
rw [isCoveringMap_iff_isCoveringMapOn_univ]
convert ← isCoveringMapOn_quotient_of_mulAction _
· refine Set.univ_subset_iff.mp fun g' _ ↦ ?_
obtain ⟨g, rfl⟩ := QuotientGroup.mk_surjective g'
exact ⟨g, eq_bot_iff.mpr fun g' hg' ↦
Subtype.ext (MulOpposite.unop_injective <| mul_right_eq_self.mp hg'), rfl⟩
· exact fun _ ↦ continuous_mul_right _
· apply Subgroup.properlyDiscontinuousSMul_opposite_of_tendsto_cofinite
apply Subgroup.tendsto_coe_cofinite_of_discrete
all_goals infer_instance
theorem isCoveringMap_toAddCircle (p : ℝ) : IsCoveringMap ((↑) : ℝ → AddCircle p) :=
AddSubgroup.isCoveringMap _
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment