Last active
January 12, 2022 12:04
-
-
Save alsrgv/0713add50fe49a409316832a31612dde to your computer and use it in GitHub Desktop.
Horovod-PyTorch with Apex (look for "# Apex")
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch.backends.cudnn as cudnn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torch.utils.data.distributed | |
from torchvision import models | |
import horovod.torch as hvd | |
import timeit | |
import numpy as np | |
# Apex | |
from apex import amp | |
# Benchmark settings | |
parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark', | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument('--fp16-allreduce', action='store_true', default=False, | |
help='use fp16 compression during allreduce') | |
parser.add_argument('--model', type=str, default='resnet50', | |
help='model to benchmark') | |
parser.add_argument('--batch-size', type=int, default=32, | |
help='input batch size') | |
parser.add_argument('--num-warmup-batches', type=int, default=10, | |
help='number of warm-up batches that don\'t count towards benchmark') | |
parser.add_argument('--num-batches-per-iter', type=int, default=10, | |
help='number of batches per benchmark iteration') | |
parser.add_argument('--num-iters', type=int, default=10, | |
help='number of benchmark iterations') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='disables CUDA training') | |
args = parser.parse_args() | |
args.cuda = not args.no_cuda and torch.cuda.is_available() | |
hvd.init() | |
if args.cuda: | |
# Horovod: pin GPU to local rank. | |
torch.cuda.set_device(hvd.local_rank()) | |
cudnn.benchmark = True | |
# Set up standard model. | |
model = getattr(models, args.model)() | |
if args.cuda: | |
# Move model to GPU. | |
model.cuda() | |
optimizer = optim.SGD(model.parameters(), lr=0.01) | |
# Horovod: (optional) compression algorithm. | |
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none | |
# Horovod: wrap optimizer with DistributedOptimizer. | |
optimizer = hvd.DistributedOptimizer(optimizer, | |
named_parameters=model.named_parameters(), | |
compression=compression) | |
# Horovod: broadcast parameters & optimizer state. | |
hvd.broadcast_parameters(model.state_dict(), root_rank=0) | |
hvd.broadcast_optimizer_state(optimizer, root_rank=0) | |
# Apex | |
model, optimizer = amp.initialize(model, optimizer, opt_level="O1") | |
# Set up fixed fake data | |
data = torch.randn(args.batch_size, 3, 224, 224) | |
target = torch.LongTensor(args.batch_size).random_() % 1000 | |
if args.cuda: | |
data, target = data.cuda(), target.cuda() | |
def benchmark_step(): | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.cross_entropy(output, target) | |
# Apex | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
optimizer.synchronize() | |
with optimizer.skip_synchronize(): | |
optimizer.step() | |
def log(s, nl=True): | |
if hvd.rank() != 0: | |
return | |
print(s, end='\n' if nl else '') | |
log('Model: %s' % args.model) | |
log('Batch size: %d' % args.batch_size) | |
device = 'GPU' if args.cuda else 'CPU' | |
log('Number of %ss: %d' % (device, hvd.size())) | |
# Warm-up | |
log('Running warmup...') | |
timeit.timeit(benchmark_step, number=args.num_warmup_batches) | |
# Benchmark | |
log('Running benchmark...') | |
img_secs = [] | |
for x in range(args.num_iters): | |
time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter) | |
img_sec = args.batch_size * args.num_batches_per_iter / time | |
log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device)) | |
img_secs.append(img_sec) | |
# Results | |
img_sec_mean = np.mean(img_secs) | |
img_sec_conf = 1.96 * np.std(img_secs) | |
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf)) | |
log('Total img/sec on %d %s(s): %.1f +-%.1f' % | |
(hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf)) |
Hi, @alsrgv @qingyu-wang
When I set fp16-allreduce to True, the package error is as follows:
<stderr>: optimizer.synchronize()
<stderr>: File "/usr/local/lib64/python3.6/site-packages/horovod/torch/__init__.py", line 178, in synchronize
<stderr>: optimizer.synchronize()
<stderr>: File "/usr/local/lib64/python3.6/site-packages/horovod/torch/__init__.py", line 178, in synchronize
<stderr>: p.grad.set_(self._compression.decompress(output, ctx))
<stderr>:RuntimeError: set_storage is not allowed on a Tensor created from .data or .detach()
How can I solve this problem?
Hi, @alsrgv @qingyu-wang
When I set fp16-allreduce to True, the package error is as follows:<stderr>: optimizer.synchronize() <stderr>: File "/usr/local/lib64/python3.6/site-packages/horovod/torch/__init__.py", line 178, in synchronize <stderr>: optimizer.synchronize() <stderr>: File "/usr/local/lib64/python3.6/site-packages/horovod/torch/__init__.py", line 178, in synchronize <stderr>: p.grad.set_(self._compression.decompress(output, ctx)) <stderr>:RuntimeError: set_storage is not allowed on a Tensor created from .data or .detach()
How can I solve this problem?
I also had this problem
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
there are something wrong if i set
--fp16-allreduce
, the error are show in the blow:and when i run my own demo i got this error: